Abstract:
A second harmonic generating method and apparatus is disclosed in which temperature of the nonlinear optical device is detected using a temperature sensor and the light output control is performed only when the temperature of the nonlinear optical device falls within a predetermined range through a comparison with a set temperature, so that the best peak can be selected. At no time is a different peak selected when the characteristics or operation conditions of the nonlinear optical device change.
Abstract:
A driving method of a display device includes: a display panel having a plurality of first blocks, a data driver applying data voltages to pixels of the plurality of first blocks, and a backlight having a plurality of second blocks respectively corresponding to the plurality of first blocks of the display panel, applying the data voltages to the pixels of the plurality of the first blocks during a plurality of data input periods corresponding to the plurality of the first blocks for one frame by the data driver, and a vertical blank period having no applied date voltage is positioned between the plurality of data input periods.
Abstract:
A method of driving a light source includes: determining a location of pixel data of a display relative to a plurality of light-emitting blocks of a light source, obtaining a plurality of luminance values of the light-emitting blocks corresponding to the location by using a lookup table (LUT) storing the luminance values of the light-emitting blocks, generating a plurality of histograms corresponding to the light-emitting blocks, determining a plurality of target luminance values of the light-emitting blocks using the histograms, and driving the light-emitting blocks using the determined target luminance values. The luminance values of the light-emitting blocks are based on the location of the pixel data within an image block of the display corresponding to each light-emitting block. Each of the histograms indicates a frequency of each of the luminance values of a respective one of the light-emitting blocks.
Abstract:
A 3D image display includes a display panel operated in 2D and 3D driving modes and a barrier panel turned off in the 2D driving mode and turned on in the 3D driving mode to separate an image output from the display panel to left and right-eye images. The barrier panel includes a reference electrode, first barrier electrodes arranged in a first direction, second barrier electrodes alternately arranged with the first barrier electrodes along the first direction, and a liquid crystal layer interposed between the reference electrode and the first and second barrier electrodes. Each first barrier electrode includes first electrode pieces arranged in a zigzag fashion along a second direction different from the first direction, and each second barrier electrode includes second electrode pieces arranged in the zigzag fashion.
Abstract:
Method of detecting a touched position on a touch display of a display apparatus includes determining an amount of an electrical charge generated by a touch on the touch display panel of a display apparatus, determining a difference between the amount of the electrical charge generated from the touch and an amount of a reference electrical charge and comparing this difference to a threshold value, detecting the position of the touch if it is determined that the difference between the amount of the electrical charge generated from the touch and the amount of the reference electrical charge is substantially the same as or larger than the threshold value and detecting the touched position using a pressure according to the touch if it is determined that difference between the amount of the electrical charge and the amount of the reference voltage is smaller than the threshold value.
Abstract:
A lamp socket includes a socket housing and a plurality of power supply members. The socket housing has a plurality of connecting holes extended in a vertical direction. The power supply members are disposed in the connecting holes, respectively, and each of the power supply members includes a plurality of lamp connecting parts and an inverter connecting part. The lamp connecting parts are protruded from an upper surface of the socket housing and include first and second portions facing each other. The inverter connecting part is integrally formed with the lamp connecting parts, and is protruded from a lower surface of the socket housing.
Abstract:
A lamp socket includes a socket housing and a plurality of power supply members. The socket housing has a plurality of connecting holes extended in a vertical direction. The power supply members are disposed in the connecting holes, respectively, and each of the power supply members includes a plurality of lamp connecting parts and an inverter connecting part. The lamp connecting parts are protruded from an upper surface of the socket housing and include first and second portions facing each other. The inverter connecting part is integrally formed with the lamp connecting parts, and is protruded from a lower surface of the socket housing.
Abstract:
A lamp driving circuit includes: a voltage supply part including a first voltage supply part and a second voltage supply part; a first circuit part including a first terminal, a second terminal and a first coil; a second circuit part including a second coil electromagnetically coupled to the first coil and which supplies a voltage to a lamp; and an electric current detecting part which detects an electric current of the first coil and includes a detecting resistor and an electric current detector.
Abstract:
A backlight assembly includes a bottom chassis, a flat fluorescent lamp, a frame and a reflecting member. The flat fluorescent lamp is supported in the bottom chassis, and the flat fluorescent lamp includes a plurality of discharge spaces to generate light. The frame is combined with the bottom chassis to hold the flat fluorescent lamp. The reflecting member in one embodiment is coupled to the frame to cover an edge portion of the flat fluorescent lamp. In another embodiment, the reflecting member is integral with the frame.
Abstract:
A light-emitting diode (“LED”) package and a backlight unit having the same are disclosed. The LED package includes a package substrate, at least two LED chips arranged on the package substrate spaced apart from each other and having different brightness characteristics, a plurality of electrodes mounted on the package substrate to supply electrical power to the LED chips, and electric wires connecting the electrodes to the LED chips.