Abstract:
A rapid one-pass liquid filtration system efficiently concentrates biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. Additional concentration stages may be added in “cascade” fashion, in order to concentrate particles below the size cut of each preceding stage remaining in the separated fluid in a concentrated sample suspension. This process can also be used to create a “band-pass” concentration for concentration of a particular target size particle within a narrow range.
Abstract:
A rapid one-pass liquid filtration system efficiently concentrates biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. Additional concentration stages may be added in “cascade” fashion, in order to concentrate particles below the size cut of each preceding stage remaining in the separated fluid in a concentrated sample suspension. This process can also be used to create a “band-pass” concentration for concentration of a particular target size particle within a narrow range.
Abstract:
Highly efficient and rapid filtration-based concentration devices, systems and methods are disclosed with sample fluidic lines and a filter packaged in a disposable tip which concentrate biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. The concentrate is then dispensed from the disposable tip in a set volume of elution fluid. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. All conduits by which the disposable tip attaches to the instrument are combined into a single connection point on the upper end of the tip.
Abstract:
Devices, systems and methods are disclosed which relate to using a wet foam elution method for removal of particles from a flat filter. Particles are captured from the atmosphere onto the flat filter. The flat filter is then placed into an extractor which passes a stream of wet foam through the flat filter. Expansion of the foam works to efficiently remove captured particles. The foam flows from the filter along with the captured particles into a sample container. Once in the sample container, the foam quickly breaks down leaving an analysis ready liquid sample.
Abstract:
Devices, systems and methods are disclosed which relate to using containers with a multitude of nucleation sites covering a major portion of the inside wall of the container to enable rapid and nearly complete removal of soluble gases from fluid samples, including carbonated beverages and other carbonated fluid samples. A fluid sample is rapidly poured into the described container initiating a catastrophic release of the soluble gas from the sample.
Abstract:
Devices, systems and methods are described for reducing noise emitted from active aerosol and bioaerosol collection devices. The system includes a noise reducing muffler between the collection component and the air mover and a noise reducing baffle at the outlet of the air mover. The muffler reduces higher frequency noises emitted from the air mover inlet while the baffle reduces lower frequency noises emitted from the air mover outlet. Placement of the muffler between the collection component and the air mover eliminates the potential for loss of particles to the muffler prior to collection.
Abstract:
Devices, systems, and methods are disclosed which relate to using a use large area surface sampler with invertible bag for collection of biological and non-biological particles prior to subsequent analysis. The large area surface sampler with invertible bag uses an inverted bag with bonded sampling material to first serve as a sampling device followed by the bag being turned right side out and the captured particles being extracted inside of the bag. The device includes measures for sealing liquid in the sampling material using a protective cup at time of manufacture. This enables users to simply remove the protective cup and perform wet surface sampling prior to turning the bag right side out and removing captured particles from the sampling material with repeated compressions. The described device, systems and methods allow users to capture and elute surface samples for human clinical, veterinary, food safety, pharmaceutical, outbreak investigations, forensics, biodefense and bioterrorism response, environmental monitoring, and other applications where collection of samples from surfaces and humans or animals is required.
Abstract:
Devices, systems and methods are disclosed which relate to using containers with a multitude of nucleation sites covering a major portion of the inside wall of the container to enable rapid and nearly complete removal of soluble gases from fluid samples, including carbonated beverages and other carbonated fluid samples. A fluid sample is rapidly poured into the described container initiating a catastrophic release of the soluble gas from the sample.
Abstract:
Highly efficient and rapid filtration-based concentration devices, systems and methods are disclosed with sample fluidic lines and a filter packaged in a disposable tip which concentrate biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. The concentrate is then dispensed from the disposable tip in a set volume of elution fluid. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. A single-use pipette tip includes fluid ports for aspirating the sample and connecting to a concentrating unit.
Abstract:
Highly efficient and rapid filtration-based concentration devices, systems and methods are disclosed with sample fluidic lines and a filter packaged in a disposable tip which concentrate biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. The concentrate is then dispensed from the disposable tip in a set volume of elution fluid. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. A single-use pipette tip includes fluid ports for aspirating the sample and connecting to a concentrating unit.