Abstract:
Disclosed are an apparatus and a method to synthesize powders typed diamond with the size between several tens nm to several μm in diameter using conventional CVD processes for deposition of diamond films. Gas phase nucleation has been induced on the boundary of plasmas, and as a result the spherical diamond powders accumulated have been obtained on circumferences of the normal substrate. With a modification of a substrate structure, a large area accumulation of the diamond powders of around 100 mm in diameter has been accomplished.
Abstract:
An improved diamond film synthesizing apparatus and a method thereof using a direct current glow discharge plasma enhanced chemical vapor deposition advantageously providing a plurality of cathodes for forming a relatively large plasma size, which includes a reactor having an upper wall and a bottom wall; a plurality of spaced apart cathode holders half inserted into the upper wall of the reactor, arranged in a triangle when looking dowawardly over the head of the reactor; a plurality of cathode connecting rods, each of which is threadly connected to the cathode holders inside the reactor, respectively; a plurality of cathodes, each of which is threadly connected to the cathode connecting rods, respectively; an anode half inserted into the bottom wall of the reactor and having a substrate attached on the top thereof, whereby all the cathodes and the anodes are spaced apart inside the reactor by a predetermined distance; and a gas supplier connected to one side wall of the reactor having a circular gas supplying tube having a plurality of holes for injecting gas into the reactor. In addition, the diamond film synthesizing method using a direct current glow discharge plasma enhanced chemical vapor deposition comprises the methods of cutting off the heat transfer from a cathode to a cathode holder, thereby maintaining the temperature of a cathode to be within a predetermined range for a stable production of a plasma.
Abstract:
Disclosed is a method for fabricating graphene ribbons which are high-functional carbon materials. Provided a method of fabricating graphene ribbons, including (a) preparing a graphene helix carbon structure which is formed by spiral growing of a unit graphene , and (b) applying energy to the carbon structure to obtain ribbon-shaped graphenes.
Abstract:
There is provided a fabrication method for an AA stacked graphene-diamond hybrid material by converting, through a high temperature treatment on diamond, a diamond surface into graphene. According to the present invention, if various types of diamond are maintained at a certain temperature having a stable graphene phase (approximately greater than 1200° C.) in a hydrogen gas atmosphere, two diamond {111} lattice planes are converted into one graphene plate (2:1 conversion), whereby the diamond surface is converted into graphene in a certain thickness, thus to fabricate the AA stacked graphene-diamond hybrid material.
Abstract:
A hollow diamond shell with a size of a few micrometer to hundreds of micrometer and having a geometrical shape and its fabrication method are disclosed. A diamond film is deposited by a CVD method and porous grits are used as a victim substrate to be etched later, so that the substrate can be easily removed by a capillary phenomenon that an etching solution can be intensively absorbed in a substrate etching process. Thus, a perfect diamond shell with only a plurality of fine pores with a nano size without any conspicuous opening can be obtained. Also, a diamond shell with a small opening of below 10 percent of the surface area of grits can be fabricated by controlling a nuclear generation of diamond particles.
Abstract:
This invention provides a method for fabricating geometrical diamond/matrix composites where all or a part of surfaces of the matrix are covered with a diamond film, and to fabricate hollow diamond shells using the composites where a part is uncoated with a diamond film. Hollow diamond shells were prepared by etching out of the matrix soluble with chemicals through an opening, a zone on the matrix, uncoated with diamond film. By changing the shape and the size of the geometrical matrixes, various kinds of diamond/matrix composites and diamond shells in shape and in size can be fabricated. The sizes available are between 200 nm and 2 mm.