Abstract:
Equipment and systems for protecting electronics against damage or upsets from electromagnetic pulse (HEMP or EMP), intentional electromagnetic interference (IEMI), and high power RF weapons are disclosed. This equipment can include a shielding arrangement includes a metallic enclosure having an interior volume defining a protected portion and an unprotected portion separated by an electromagnetically shielding barrier, and having a portal providing access to the protective portion and including an access opening, a shielding cover sized to cover the access opening, and an electromagnetically sealing gasket positioned around a perimeter of the access opening. The shielding arrangement also includes one or more filters positioned at least partially within the unprotected portion and along the electromagnetically shielding barrier to dampen electromagnetic signals and/or power signals outside a predetermined acceptable range. In some cases, waveguides beyond cutoff are included, to provide passage of optical signals or airflow through the enclosure.
Abstract:
The present invention provides compounds of formula (I) wherein the substituents are as defined in claim 1. The compounds are suitable intermediates in the preparation of herbicidally active 4-phenyl-3,5-pyrandiones, 4-phenyl-3,5-thiopyran-diones and 6-phenylcyclohexane-1,3,5-triones.
Abstract:
An electromagnetically shielded power module and data center including such a module are disclosed. In one example, the electromagnetically shielded power module includes an electromagnetically shielded enclosure including a shell and at least one door, the enclosure surrounding and providing electromagnetic shielding for an interior volume. The electromagnetically shielded power module also includes a power delivery control module positioned within the interior volume and configured to monitor filtered power received into the interior volume of the electromagnetically shielded enclosure. The electromagnetically shielded power module further includes a plurality of power distribution units positioned within the interior volume and configured to receive filtered power from the power delivery control module and route power to one or more computing systems. The electromagnetically shielded power module also includes a stored energy system positioned within the interior volume and configured to deliver energy to the power distribution unit upon detection of an interruption of filtered power to the power delivery control module.
Abstract:
An electromagnetically shielded enclosure is disclosed. One such system includes a continuously welded shell having a top, a bottom, and a plurality of side walls cooperating to enclose an interior volume, the interior volume sized to receive electronic equipment and allow human entry. The enclosure is constructed from electromagnetically conductive materials and includes continuous welds along seams joining each material. The enclosure includes a sally port located within the enclosure. The sally port includes a first door in one of the plurality of side walls and constructed from electromagnetically conductive materials. The sally port also includes a second door constructed from electromagnetically conductive materials. The sally port defines a secondary interior volume within the enclosure sized to allow human entry through either the first or second door.
Abstract:
Techniques for non-invasive blood pressure monitoring are disclosed. Data corresponding to a patient may be received from a hospital information system. The data may include, for example, drug administration data, medical procedure data, medical equipment data, or a combination thereof. Whether a blood pressure monitoring system needs to be recalibrated may be determined, based at least in part on the received data. If it is determined that the blood pressure monitoring system needs to be recalibrated, the recalibration may be performed and at least one blood pressure measurement of the patient may be computed using the recalibrated blood pressure monitoring system.
Abstract:
The present disclosure relates to pulse oximetry measurements and, more particularly, relates to a combined sensor that includes a pulse oximetry (SpO2) sensor component and a continuous non-invasive blood pressure (CNIBP) sensor component. The combined sensor can be positioned such that the SpO2 sensor component is located over tissues where pulsatility is weak while the CNIBP sensor component may be located over tissues where pulsatility is strong. A second separate CNIBP sensor may be used to together with the CNIBP sensor component of the combined sensor in order to detect the differential pressure pulse transit time from the heart to two different locations on the body. A pulse signal detected by the CNIBP sensor component of the combined sensor can be used to trigger the SpO2 measurement from the SpO2 sensor component in order to improve SpO2 measurement fidelity.
Abstract:
According to embodiments, systems and methods are provided for filtering a signal. A first reference signal may be generated according to a signal model and a second reference signal may be generated by analyzing a continuous wavelet transform of a signal The first and second reference signals may then both be applied to an input signal to filter the input signal according to the components of both of the reference signals.
Abstract:
A method and system are provided for evaluating in patient monitoring whether a signal is sensed optimally by receiving a signal, transforming the signal using a wavelet transform, generating a scalogram based at least in part on the transformed signal, identifying a pulse band in the scalogram, identifying a characteristic of the pulse band, determining, based on the characteristic of the pulse band, whether the signal is sensed optimally; and triggering an event. The characteristics of the pulse band and scalogram may be used to provide an indication of monitoring conditions.