Abstract:
Water is flowed down into heat transfer tubes from their inlet ports to form flowing water films. The flowing water is evaporated from the flowing water films, thereby cooling combustion air of a gas turbine that flows in the channel. Water vapor generated in the heat transfer tubes is absorbed by an absorber by using an aqueous lithium bromide solution. Water vapor contained in the aqueous solution supplied from the absorber is extracted. The extracted water vapor is condensed to water by a condenser through which cooling water flows. The obtained water is supplied to the water tank. A condensed aqueous solution from which the water vapor has been removed by the generator is supplied to the absorber.
Abstract:
The present invention is to provide a method for identifying an optical line easily and accurately regardless of the optical line length. A plurality of reflecting parts is placed on the optical line, and a combination of relative positions of the reflecting parts is changed for every optical line to form an identification code, and the relative positions of the reflecting parts are detected based on reflected lights when a detecting light is inputted to the optical line, so that the optical line is identified based on a result. Concretely, when the detecting light is inputted to one end of the optical line, the light is reflected at the plurality of the reflecting parts which form the identification code and comes back the input end. A combination of the relative positions etc. of the reflecting parts is changed for every optical line. To detect the relative positions of the reflecting parts which form the identification code, either the optical path difference of the reflected lights from the reflecting parts is measured or the time difference between the reflected lights come back from the reflecting parts is measured. Then, based on the result, the optical line can be identified.
Abstract:
Provided is a uni-axial multi-stage radial gas expander which has a high degree of reliability and which can sufficiently cope with the conditions of a high pressure and a high pressure ratio. Two or more radial gas expander sections (11A, 11B) formed of two-or-more-stage impeller vanes (14a to 14h) arranged between bearings (21a, 21b) on a rotor shaft (13) consisting of a single shaft are housed in a signal casing (10).
Abstract:
A communication apparatus performing communication in a noncontact manner is provided. The communication apparatus includes a transmission control unit configured to transmit a command; a timeout period checking unit configured to check whether a timeout period during which a response to the command is waited for has elapsed; a retransmission control unit configured to retransmit the command only after the timeout period has elapsed; an error checking unit configured to check whether data received within the timeout period has an error; and a processing unit configured to regard the data received within the timeout period as a correct response to the command if the data does not have an error and perform a process in accordance with the response. If the data received within the timeout period has an error, the retransmission control unit does not retransmit the command and the timeout period checking unit continues to check whether the timeout period has elapsed.
Abstract:
In an embodiment, a CO2 recovery system has an absorber, a regenerator, and a circulation device. An absorption liquid has an aqueous solution of amine having an alcohol group, and dimethyl silicone oil in which a part of methyl groups is substituted by at least one type selected from an aminoalkyl group, a carboxyl group, and a hydroxyl-containing alkyl group. The absorber contacts a combustion exhaust gas of a fossil fuel and the absorption liquid to absorb CO2, which is contained in the combustion exhaust gas, into the absorption liquid. The regenerator releases CO2 by applying thermal energy to the CO2-absorbed absorption liquid. A circulation device circulates the absorption liquid between the absorber and the regenerator.
Abstract:
In one embodiment, a steam device includes a high-temperature member and a low-temperature member. One surface of the high-temperature member is exposed to high-temperature steam, and the other surface is cooled by cooling steam having a temperature lower than the high-temperature steam. The low-temperature member is disposed to face the high-temperature member with a passage for the cooling steam therebetween and is formed of a material having a heat resistance lower than that of the high-temperature member. The steam device has at least one high-reflectance film selected from a first high-reflectance film, which is formed on the surface of the high-temperature member which is exposed to the high-temperature steam and has a higher reflectance with respect to infrared rays than the high-temperature member, and a second high-reflectance film, which is formed on the surface of the low-temperature member facing the high-temperature member and has a higher reflectance with respect to infrared rays than the low-temperature member.
Abstract:
A turbine rotor 300 includes: a high-temperature turbine rotor constituent part 301 where high-temperature steam passes; low-temperature turbine rotor constituent parts 302 sandwiching and weld-connected to the high-temperature turbine rotor constituent part 301 and made of a material different from a material of the high-temperature turbine rotor constituent part 301; and a cooling part cooling the high-temperature turbine rotor constituent part 301 by ejecting cooling steam 240 to a position, of the high-temperature turbine rotor constituent part 301, near a welded portion 120 between the high-temperature turbine rotor constituent part 301 and the low-temperature turbine rotor constituent part 302. A value equal to a distance divided by a diameter is equal to or more than 0.3, where the distance is a distance from the position, of the high-temperature turbine rotor constituent part 301, ejected the cooling steam 240 up to the welded portion 120, and the diameter is a turbine rotor diameter of the high-temperature turbine rotor constituent part 301.
Abstract:
A plurality of blades are studded in a rotor disc integrated with the rotor along the circumferential direction of the rotor, a plurality of vanes are attached to a casing covering the rotor along the circumferential direction of the rotor, and an internal diaphragm disposed on rotor-side surfaces of the vanes in such a way that the internal diaphragm faces the rotor disc. The vanes and the blades adjacent to each other in the axial direction of the rotor form a turbine stage. A rotor-side cooling path is formed through the rotor disc in the axial direction of the rotor, and a diaphragm-side cooling path is formed through the internal diaphragm in the axial direction of the rotor, and a cooling medium flowing through the rotor-side cooling path diverts into the diaphragm-side cooling path and a labyrinth flow path provided between the internal diaphragm and the rotor.
Abstract:
In an embodiment, a CO2 recovery system has an absorber, a regenerator, and a circulation device. An absorption liquid has an aqueous solution of amine having an alcohol group, and dimethyl silicone oil in which a part of methyl groups is substituted by at least one type selected from an aminoalkyl group, a carboxyl group, and a hydroxyl-containing alkyl group. The absorber contacts a combustion exhaust gas of a fossil fuel and the absorption liquid to absorb CO2, which is contained in the combustion exhaust gas, into the absorption liquid. The regenerator releases CO2 by applying thermal energy to the CO2-absorbed absorption liquid. A circulation device circulates the absorption liquid between the absorber and the regenerator.
Abstract:
An intermediate-pressure turbine is divided into a high-temperature, high-pressure side high-temperature, intermediate-pressure turbine section 11a and a low-temperature, low-pressure side low-temperature, intermediate-pressure turbine section 11b, the component members of the high-temperature, intermediate-pressure turbine section 11a are formed of austenitic heat-resistant steels or Ni-based alloys, and the high-temperature, intermediate-pressure turbine section 11a is operated by steam having a temperature of 650° C. or more. Other turbines are mainly formed of ferritic heat-resistant steels. Thus, a steam turbine power plant having high thermal efficiency and being economical can be provided.