Abstract:
The inventive concept provides semiconductor laser devices and methods of fabricating the same. According to the method, a silicon-crystalline germanium layer for emitting a laser may be formed in a selected region by a selective epitaxial growth (SEG) method. Thus, surface roughness of both ends of a Fabry Perot cavity formed of the silicon-crystalline germanium layer may be reduced or minimized, and a cutting process and a polishing process may be omitted in the method of fabricating the semiconductor laser device.
Abstract:
The inventive concept provides semiconductor laser devices and methods of fabricating the same. According to the method, a silicon-crystalline germanium layer for emitting a laser may be formed in a selected region by a selective epitaxial growth (SEG) method. Thus, surface roughness of both ends of a Fabry Perot cavity formed of the silicon-crystalline germanium layer may be reduced or minimized, and a cutting process and a polishing process may be omitted in the method of fabricating the semiconductor laser device.
Abstract:
The present invention relates to a pressure sensitive adhesive composition, a polarizer and a liquid crystal display device. The present invention may provide a pressure sensitive adhesive which can have excellent stress relaxation characteristic to effectively inhibit light leakage by dimension change of optical films such as polarizing plates. In addition, a pressure sensitive adhesive having excellent physical properties such as adhesion durability and workability may be provided.[Index]Pressure sensitive adhesive composition, Weight average molecular weight, IPN, Polarizing plate, Liquid crystal display
Abstract:
Provided is a manufacturing method of a photo detector. The method includes: forming a first single crystal semiconductor layer and an optical waveguide protruding from the first single crystal semiconductor layer; forming an insulation layer on the first single crystal semiconductor layer to cover the optical waveguide; forming an opening by etching the insulation layer to expose the top surface of the optical waveguide; forming a second single crystal semiconductor layer from the top surface of the exposed optical waveguide, in the opening; and selectively forming a poly semiconductor layer from the top surface of the second single crystal semiconductor layer, the poly semiconductor layer being doped with dopants.
Abstract:
Disclosed are (A) an acrylic pressure-sensitive adhesive; and (B) an acrylic pressure-sensitive adhesive comprising an optically anisotropic compound having at least one substituent which contains an alkyl group, alkenyl group or alkynyl group at a meta-position of a mesogen. A polarizing plate and a liquid crystal display using the same are also disclosed. The optically anisotropic compound ensures excellent compatibility with the adhesive and high birefringence. Thus, main properties such as adhesion, reliability and durability in the conditions of high temperatures or high temperatures and high humidity are not worsened. Moreover light leakage is prevented by efficiently controlling the birefringence caused by shrinkage stress of the polarizing plate.