Abstract:
Disclosed are an adaptive pilot symbol assignment method that flexibly controls the number of transmit antennas according to each user's moving speed, channel status, or user request, and assigns proper pilot symbols in the downlink of an OFDMA (Orthogonal Frequency Division Multiplexing Access) based cellular system; and a sub-carrier allocation method for high-speed mobile that allocates some sub-carriers to assign proper pilot symbols for ultrahigh-speed mobile users, and the rest of the sub-carriers to the other users to assign proper pilot symbols to the users, on the assumption that the ultrahigh-speed mobile users have a traffic volume almost insignificant to the whole traffic volume.
Abstract:
Method for providing frequency-hopping OFDMA using symbols of comb patter, the method including the steps of: a) assigning frequency domain signal X(k) of comb pattern (comb symbol, k is frequency index) to modulated data sequence, the comb symbol comprising predetermined number of sub carriers (sub carrier group) which are placed with predetermined interval in the whole available frequency band; b) getting the comb symbol hopped for the comb symbol to have independent frequency offset; and c) inverse fast fourier transforming the comb symbol to time domain signal x(n) (n is time index) and transmitting the signal.
Abstract:
Disclosed is an adaptive transmitting and receiving device and method using frequency division duplexing. A transmitter transmits a preamble or a pilot to a receiver. The receiver estimates a received SNR from the preamble or pilot, determines parameters (received log likelihood ratio parameters) of determining the distribution of the received log likelihood ratio, and feeds them back to the transmitter. The transmitter adaptively determines an antenna method, a modulation method, and a transmit power according to the parameters, and adaptively transmits traffic data to the receiver according to the determined antenna method, the modulation method, and the transmit power.
Abstract:
The present invention relates to a mobile communication system, and to a method for managing terminal paging in the system. According to the present invention, local IDs are each allocated to the respective multiple MTC terminals, and therefore trigger periods can be efficiently managed in a network. Further, the multiple MTC terminals can be grouped using the allocated local IDs, thus achieving advantages of an increased number of MTC terminals which can be managed in the network.
Abstract:
A semiconductor memory chip includes a first pad unit configured to receive a first data and a first strobe signal, and a first selection transfer unit configured to transfer the first data and the first strobe signal to a first write path circuit in a first mode, and transfer the first data and the first strobe signal to a second write path circuit in a swap mode.
Abstract:
A method for cooperative control of power among base stations and a base station device which performs the same are discussed. A first receiving unit is configured such that a specific base station in a cooperative unit receives, from a specific terminal located on a cell edge of the specific base station, token value information which indicates an average transmission rate of the specific terminal and the up-to-date level of satisfaction of the minimum average transmission rate of the specific terminal. A second receiving unit receives, from one or more other base stations in the cooperative unit, information containing an average transmission rate of terminals located on edges of each of the base stations, token values of terminals located on cell edges of each of the base stations, and the current power levels of each of one or more base stations.
Abstract:
A semiconductor memory chip includes a first pad unit configured to receive a first data and a first strobe signal, and a first selection transfer unit configured to transfer the first data and the first strobe signal to a first write path circuit in a first mode, and transfer the first data and the first strobe signal to a second write path circuit in a swap mode.
Abstract:
A method for puncturing a Low Density Parity Check (LDPC). The method includes a) setting a codeword length and the total number of bit nodes to be punctured; b) selecting a check node (or check nodes) with highest priority excluding check nodes completely checked in a current round; c) selecting a bit node (or bit nodes) with a highest priority excluding bit nodes completely checked among bit nodes connected to the selected check node (or check nodes); d) determining whether the selected bit node is a bit node to be punctured, that is, it is not systematic, not set by a puncturing prohibition flag; e) puncturing an associated bit node if the selected bit node is the bit node to be punctured, setting unpunctured bit nodes connected to the selected check node by a puncturing prohibition flag, decreasing the number of remained bit nodes to be punctured by 1 and increasing the number of connected punctured node of associated check node by 1; f) determining whether the number of remaining bits to be punctured is greater than 0; and g) returning to step b) if the number of remaining bits to be punctured is greater than 0, and ending a puncturing process if the number of remaining bits to be punctured is not greater than 0.
Abstract:
A self-configuring method of a femtocell base station extracts preambles from signals received from adjacent macrocells and femtocells. Transmission power of the femtocell base station is set using the extracted macrocell preambles. In addition, the preambles of the femtocell base station are selected using the correlation values between the macrocell preambles and the pre-stored femtocell preambles. Moreover, the resources for data transmission of the femtocell base station are allocated considering the adjacent macrocells and the femtocells.
Abstract:
A receiving apparatus of a UE transmits at least one channel information among a plurality of channel information to a transmitting apparatus of a base station according to an adaptive transmission method set for a received signal. In addition, the receiving apparatus transmits channel state information generated on the basis of the plurality of channel information to the transmitting apparatus with a relatively long interval. The transmitting apparatus transmits traffic data to the transmitting apparatus by using the received channel state information and at least one of channel information and one of a plurality of adaptive transmission methods. Accordingly, the amount of channel information transmitted to the transmitting apparatus can be modified in accordance with an adaptive transmission method set for a received signal, thereby minimizing the amount of channel information fed back from the receiving apparatus and increasing system capacity.