Abstract:
Lubricated surfaces, lubricant compositions for lubricating a surface, and methods for increasing antiwear properties in lubricants. The lubricated surface is provided by a lubricant composition including a base oil of lubricating viscosity, at least one metal salt of phosphorothioic acid, and an amount of at least one hydrocarbon soluble titanium compound effective to provide an increase in antiwear properties of the lubricant composition. A ratio of titanium metal to phosphorus in the antiwear agent ranges from about 0.3:1 to about 1.5:1.
Abstract:
A lubricant composition comprising a dispersant and a base oil comprising less than about 3% by weight of tetracycloparaffins is disclosed. Methods of making and using the lubricant composition are also disclosed.
Abstract:
The present invention is a thorax phantom that enables simulation of tumor motion within a tissue equivalent material. The system consists of a tissue equivalent epoxy phantom representing a 15 cm axial section of the human thorax that includes simplified spine and lung anatomies. Within the phantom are thru rods of similar tissue density. The rods are attached to a computer-controlled actuator that facilitates both linear and rotational motion of the rods within the phantom. A plurality of tumor targets and radiation detectors can be placed within the rods at various locations thereby enabling the simulation of respiratory and cardiac induced tumor motions within the phantom and assessment of the effects of these motions on image acquisitions, treatment planning and radiation treatment delivery.
Abstract:
A method for reducing friction coefficients and wear between lubricated surfaces. The method includes providing an amount of an oil-soluble or oil-dispersible component selected from the group consisting of a photo-crosslinkable poly(2-cinnamoyloxyalkyl acrylate) core and a diblock acrylate copolymer corona in a fully formulated lubricant composition containing a base oil of lubricating viscosity. The lubricant composition containing the component is applied to a surface to be lubricated.
Abstract:
A lubricated surface, a method for reducing wear between moving parts, and lubricants, and lubricant additive concentrates containing a wear reducing agent. The lubricated surface contains a base oil of lubricating viscosity and an amount of at least one hydrocarbon soluble magnesium compound effective to provide a reduction in surface wear greater than a reduction surface wear for a lubricant composition devoid of the magnesium compound. The lubricant composition contains no more than about 0.05 wt. % phosphorus and is devoid of calcium detergents.
Abstract:
A lubricant composition comprising a detergent and a base oil comprising more than about 1.6% by weight of tetracycloparaffins is disclosed. Methods of making and using the composition are also disclosed.
Abstract:
There is disclosed a lubricating composition comprising a friction modifier and a base oil comprising less than about 3% by weight of tetracycloparaffins. Methods of making and using the composition are also disclosed.
Abstract:
A method for reducing a friction coefficient adjacent a lubricated surface, and a lubricant composition for reducing a friction coefficient between lubricated surfaces. The method includes providing an amount of metal-containing dispersed in a fully formulated lubricant composition containing a base oil of lubricating viscosity, wherein the nanoparticles have an average particles size ranging from about 1 to about 10 nanometers. The lubricant composition containing the metal-containing nanoparticles is applied to a surface to be lubricated.
Abstract:
There is disclosed a lubricant composition comprising a base oil comprising a reduced total amount of cyclobenzene as compared to another base oil. Methods of using the lubricant composition for preventing and/or reducing the deposit formation in an engine are also disclosed.
Abstract:
Lubricated surfaces, lubricant compositions for lubricating a surface, and methods for increasing antiwear properties in lubricants. The lubricated surface is provided by a lubricant composition including a base oil of lubricating viscosity, at least one metal salt of phosphorothioic acid, and an amount of at least one hydrocarbon soluble titanium compound effective to provide an increase in antiwear properties of the lubricant composition. A ratio of titanium metal to phosphorus in the antiwear agent ranges from about 0.3:1 to about 1.5:1.