Abstract:
The present invention provides an additive composition comprising (a) at least one ash-containing phosphorus compound prepared by a primary or secondary alcohol or mixtures thereof, and (b) a salt of at least one hydrocarbylamine and at least one hydrocarbyl acid phosphate. Further, the present invention provides a lubricating composition comprising (a) at least one ash-containing phosphorus compound prepared by a primary or secondary alcohol or mixtures thereof, and (b) a salt of at least one hydrocarbylamine and at least one hydrocarbyl acid phosphate, and methods of use thereof.
Abstract:
The present disclosure relates to a non-acidic, sulfur-containing, phosphorus-containing compound of the formula I where R1, R2, R3, R4, R5, R6, and R7 are as defined herein. Such a compound may exhibit improved antiwear performance and thermal stability in lubricating compositions.
Abstract:
The present invention discloses a process for manufacturing an alkylphosphonate monoester. The process may comprise partially hydrolyzing an alkyl phosphonate diester with an alkaline compound in a first solvent to provide a reaction mixture, wherein the first solvent comprises a mixture of an alcohol and water. The reaction mixture may be diluted with a second solvent to provide an organic phase, wherein the second solvent comprises at least one non-polar organic solvent. The process may comprise acidifying the reaction mixture with an acid, wherein the organic phase includes an alkylphosphonate monoester.
Abstract:
Lubricated surfaces and lubricant compositions for lubricating a surface. The lubricated surface is provided by a lubricant composition including a base oil of lubricating viscosity, at least one metal salt of phosphorothioic acid, and an ashless, sulfur-free organophosphorus compound providing a metal to phosphorus weight ratio ranging from about 0.25:1 to about 1.0:1 by weight. The lubricant composition is substantially devoid of molybdenum.
Abstract:
Lubricated surfaces and lubricant compositions for lubricating a surface. The lubricated surface is provided by a lubricant composition including a base oil of lubricating viscosity, at least one metal salt of phosphorothioic acid, and an ashless, sulfur-free organophosphorus compound providing a metal to phosphorus weight ratio ranging from about 0.25:1 to about 1.0:1 by weight. The lubricant composition is substantially devoid of molybdenum.
Abstract:
A lubricant composition for improved phosphorus retention of a used oil and a method for decreasing catalyst deactivation in a catalytic system for an engine exhaust. The lubricant composition is provided by a base oil and an additive composition that contains a phosphorus-containing additive mixture. The phosphorus-containing additive mixture includes an ash-containing phosphorus compound and an ash-free phosphorus compound. A phosphorus retention value provided by the lubricant composition is greater than about 85 percent after oil aging based on an amount of phosphorus initially present in the lubricant composition.
Abstract:
Gear oils meeting GL-5 specifications are obtained by blending a base oil, a thermally stable phosphorus-containing anti-wear agent; and a metal-free sulfur-containing extreme-pressure agent; wherein the thermally stable phosphorus-containing anti-wear agent is present in an amount sufficient to provide from 100 to 350 ppm phosphorus to the formulated gear oil and wherein the metal-free sulfur-containing extreme-pressure agent is present in an amount sufficient to provide at least 10,000 ppm sulfur to the formulated gear oil and wherein the formulated gear oil contains 350 ppm of phosphorus or less.
Abstract:
There is disclosed a lubricant composition comprising a base oil comprising a reduced total amount of cyclobenzene as compared to another base oil. Methods of using the lubricant composition for preventing and/or reducing the deposit formation in an engine are also disclosed.
Abstract:
The present disclosure relates to a non-acidic, sulfur-containing, phosphorus-containing compound of the formula I where R1, R2, R3, R4, R5, R6, and R7 are as defined herein. Such a compound may exhibit improved antiwear performance and thermal stability in lubricating compositions.