Abstract:
This invention provides a method of forming a polymeric coating for a stent. The method can comprise applying a prepolymer or a combination of prepolymers to the stent and initiating polymerization to form a polymeric coating for the stent. The coating material can optionally contain a biologically active agent or combination of agents.
Abstract:
A coating and method for a coating an implantable device or prostheses are disclosed. The coating includes an undercoat of polymeric material containing an amount of biologically active material, particularly heparin, dispersed therein. The coating further includes a topcoat which covers less than the entire surface of the undercoat and wherein the topcoat comprises a polymeric material substantially free of pores and porosigens. The polymeric material of the topcoat can be a biostable, biocompatible material which provides long term non-thrombogenicity to the device portion during and after release of the biologically active material.
Abstract:
A process for the preparation of slippery, hydrophilic polyurethane hydrogel coating compositions, and materials composed of a polymeric plastic or rubber substrate or a metal substrate with a coating of a slippery, hydrophilic polyurethane hydrogel thereon, such that the coating composition tenaciously adheres to the substrate, are disclosed. The coating compositions and coated materials are non-toxic and biocompatible, and are ideally suited for use on medical devices, particularly, catheters, catheter balloons and stents. The coating compositions, coated materials and coated devices demonstrate low coefficients of friction in contact with body fluids, especially blood, as well as a high degree of wear permanence over prolonged use of the device. The hydrogel coating compositions are capable of being dried to facilitate storage of the devices to which they have been applied, and can be instantly reactivated for later use by exposure to water.
Abstract:
A process for preparing coating compositions of a commingled hydrogel of a polyurethane-polyurea polymer hydrogel and a poly(N-vinylpyrrolidone) polymer hydrogel; a process for making materials composed of a polymeric plastic or rubber substrate or a metallic substrate, with a coating of the commingled hydrogel thereon; and a process for making medical devices with a coating of the commingled hydrogel thereon, are disclosed. The coating compositions tenaciously adhere to the substrate materials and medical devices to which they are applied due to bonding of a tie coat to a reactive substrate surface and due to the commingling of the two hydrogel components. The coating compositions and coated materials and medical devices are non-toxic and biocompatible, making them ideally suited for use in applications such as for catheters, catheter balloons and stents. In such applications, the coating compositions, coated materials, and coated medical devices made therefrom demonstrate low coefficients of friction in contact with body fluids, especially blood, as well as a high degree of wear permanence over prolonged use. The commingled hydrogel coatings are capable of being dried to facilitate storage of the devices to which they have been applied, and can be instantly reactivated for later use by exposure to water.
Abstract:
Methods, devices, kits and compositions to treat a myocardial infarction. In one embodiment, the method includes the prevention of remodeling of the infarct zone of the ventricle. In other embodiments, the method includes the introduction of structurally reinforcing agents. In other embodiments, agents are introduced into a ventricle to increase compliance of the ventricle. In an alternative embodiment, the prevention of remodeling includes the prevention of thinning of the ventricular infarct zone. In another embodiment, the prevention of remodeling and thinning of the infarct zone involves the cross-linking of collagen and prevention of collagen slipping. In other embodiments, the structurally reinforcing agent may be accompanied by other therapeutic agents. These agents may include but are not limited to pro-fibroblastic and angiogenic agents.
Abstract:
The medical devices of the invention comprise an expandable portion which is covered with a sponge coating for release of at least one biologically active material. The sponge coating is made of a non-hydrogel polymer having a plurality of voids. The device can further include means for infusing or expelling the biologically active material or drug into the voids. The drug is delivered to the body lumen of a patient by expelling the drug and inflating or expanding the expandable portion of the catheter or device.
Abstract:
The medical devices of the invention comprise an expandable portion which is covered with a sponge coating for release of at least one biologically active material. The sponge coating is made of a non-hydrogel polymer having a plurality of voids. The device can further include means for infusing or expelling the biologically active material or drug into the voids. The drug is delivered to the body lumen of a patient by expelling the drug and inflating or expanding the expandable portion of the catheter or device.