摘要:
A medical assembly and method are provided to effectively treat abnormal tissue, such as, a tumor. The target tissue is thermally ablated using a suitable source, such as RF or laser energy. A cooling shield is placed in contact with non-target tissue adjacent the target tissue, and actively cooled to conduct thermal energy away from the non-target tissue. In one method, the cooling shield can be placed between two organs, in which case, one of the two organs can comprise the target tissue, and the other of the two organs can comprise the non-target tissue. In this case, the cooling shield may comprise an actively cooled inflatable balloon, which can be disposed between the two organs when deflated, and then inflated. The inflatable balloon can be actively cooled by pumping a cooling medium through it. In another method, the cooling shield can be embedded within the non-target tissue. In this case, the cooling shield can comprise one or more needles. If a plurality of needles is used, they can be embedded into the non-target tissue in a series, e.g., a rectilinear or curvilinear arrangement. The needle(s) can be actively cooled by pumping a cooling medium through them.
摘要:
An expandable intravascular medical device is provided. The medical device comprises an expandable tubular body that includes an integrated resilient support structure that forms a plurality of electrically conductive regions to which the lead(s) is coupled. The tubular body further includes at least one electrically insulative element disposed between the conductive regions. In one embodiment, the support structure is skeletal in nature, e.g., it can be formed of a mesh, braid, or coil. The conductive regions can be variously formed by the support structure. For example, the support structure may comprise electrically conductive sub-structures that form the conductive regions. In this case, the sub-structures may be mechanically linked together by the insulative element(s), or they can be directly linked together, and the insulative element(s) can take the form of insulative layer(s) disposed on one or more of the conductive sub-structures. As another example, the support structure can have a conductive core and insulative material disposed over portions of the conductive core. In this case, the exposed core portions form the conductive regions, and the unexposed core portions form the insulative element(s).
摘要:
An intravascular catheter that exhibits the combined features of superior flexibility, softness, radiopacity and oval/kink resistance. The catheter includes an elongate shaft having a proximal region, a distal region and a lumen extending therethrough. The proximal region of the shaft includes an inner lubricious polymer layer, a reinforcement layer and an outer layer. The reinforcement layer comprises a braid having one or more metallic members and a plurality of polymer members wherein each polymer member comprises a plurality of monofilaments, preferably formed of LCP. The polymer members of the braid provide improved flexibility and softness in addition to high burst pressure. The metallic member(s) of the braid provide improved radiopacity and oval/kink resistance. The catheter may also include a longitudinal member extending along the reinforcement layer.
摘要:
Methods are provided for ablating tissue by implanting a plurality of electrode devices within the tissue to be treated and exposing the implanted electrode devices with RF energy conveyed from a separate electrode device. In this manner, a greater region of tissue is ablated than what would normally be ablated with the separate electrode device. In addition, the implanted electrode devices can create a roadmap that allows the progress of the treatment to be managed during follow-ups. The implanted electrode devices can be variously delivered to the tissue, for example, by detaching the electrode devices from one or more delivery devices. For example, a core wire with an electrolytically detachable junction can be used to separate the electrode device from the core wire. Pusher rods with mechanically detachable junctions are also contemplated.
摘要:
Methods are provided for ablating tissue by implanting a plurality of electrode devices within the tissue to be treated and exposing the implanted electrode devices with RF energy conveyed from a separate electrode device. In this manner, a greater region of tissue is ablated than what would normally be ablated with the separate electrode device. In addition, the implanted electrode devices can create a roadmap that allows the progress of the treatment to be managed during follow-ups. The implanted electrode devices can be variously delivered to the tissue, for example, by detaching the electrode devices from one or more delivery devices. For example, a core wire with an electrolytically detachable junction can be used to separate the electrode device from the core wire. Pusher rods with mechanically detachable junctions are also contemplated.
摘要:
Methods and devices for occluding a vessel during a percutaneous ablation procedure. An elongated access device having a lumen and a tissue piercing, open distal end in communication with the lumen is used to percutaneously access a vessel that supplied blood to the tissue to be treated. An elongated balloon deployment device is used to deliver a balloon into the interior of the vessel. The balloon is inflated, resulting in the occlusion of the vessel. The tissue to be treated is ablated. Because there is little or no blood to transfer the thermal energy away from the heated tissue, the ablation procedure is performed more efficiently. The balloon may be subsequently deflated allowing normal flow through the vessel to return.
摘要:
A surface electrode for ablating tissue is provided. The surface electrode comprises a base, a plurality of tissue penetrating needle electrodes extending from the surface of the base an adjustable distance, and an electrical interface coupled to the plurality of needle electrodes. The adjustability of the needle electrodes allows the depth that the needle electrodes penetrate through tissue to be adjusted.
摘要:
An expandable intravascular medical device comprises an arcuate spring configured to be expanded into contact with the inner surface of a blood vessel. Another medical device comprises an electrode support structure, e.g., a non-tubular arcuate structure or a cylindrical member, and a plurality of resilient spring loops laterally extending from the support structure. The contact created between the loops and a blood vessel is sufficient to anchor the medical device within the blood vessel. In another embodiment, the medical device comprises an elongated member and two resilient spring arms extending distally from the elongated member. The arms are configured to be laterally moved towards each other to place the medical device in a collapsed geometry, and configured to be laterally moved away from each into contact with an inner surface of a blood vessel to place the medical device an expanded geometry.
摘要:
A medical lead and method of treating a patient are provided. The medical lead comprises an electrically insulative membrane, a resilient spring element associated with the insulative membrane, and at least one electrode associated with the insulative membrane. The spring layer is configured to urge that insulative membrane into an expanded geometry. The medical lead is configured to be collapsed into a compact form for percutaneous delivery into the patient, thereby obviating the need to perform an invasive surgical procedure on the patient. The patient can be treated by placing the medical lead into a collapsed state by applying a compressive force to the medical lead, percutaneously delivering the collapsed medical lead into the patient adjacent tissue to be treated, and placing the medical lead into an expanded state by releasing the compressive force.
摘要:
A medical assembly and method are provided to effectively treat abnormal tissue, such as, a tumor. The target tissue is thermally ablated using a suitable source, such as RF or laser energy. A cooling shield is placed in contact with non-target tissue adjacent the target tissue, and actively cooled to conduct thermal energy away from the non-target tissue. In one method, the cooling shield can be placed between two organs, in which case, one of the two organs can comprise the target tissue, and the other of the two organs can comprise the non-target tissue. In this case, the cooling shield may comprise an actively cooled inflatable balloon, which can be disposed between the two organs when deflated, and then inflated. The inflatable balloon can be actively cooled by pumping a cooling medium through it. In another method, the cooling shield can be embedded within the non-target tissue. In this case, the cooling shield can comprise one or more needles. If a plurality of needles is used, they can be embedded into the non-target tissue in a series, e.g., a rectilinear or curvilinear arrangement. The needle(s) can be actively cooled by pumping a cooling medium through them.