Abstract:
A method for controlling an induction machine having a rotor includes the steps of obtaining a torque command, calculating an estimated squared value of resistance of the rotor using the torque command, determining an offset for the resistance of the rotor, and generating an updated measure of rotor resistance using the estimated squared value and the offset.
Abstract:
Systems and methods are provided for a double-ended inverter drive system for a fuel cell vehicle. An electric drive system for a vehicle comprises an electric motor configured to provide traction power to the vehicle. A first inverter is coupled to the electric motor, and is configured to provide alternating current to the electric motor. A fuel cell is coupled to the first inverter to provide power flow from the fuel cell to the electric motor. A second inverter is coupled to the electric motor, and is configured to provide alternating current to the electric motor. An energy source is coupled to the second inverter to provide power flow between the energy source and the electric motor. A controller is coupled to the first inverter and the second inverter, and is configured to provide a constant power from the fuel cell during operation of the electric motor.
Abstract:
A double ended inverter system for an AC traction motor of a vehicle includes a fuel cell configured to provide a DC voltage, an impedance source inverter subsystem coupled to the fuel cell, a DC voltage source, and an inverter subsystem coupled to the DC voltage source. The impedance source inverter subsystem, which includes an ultracapacitor, is configured to drive the AC traction motor. The inverter subsystem is configured to drive the AC electric traction motor. The ultracapacitor is implemented in a crossed LC network coupled to the fuel cell.
Abstract:
Systems and apparatus are provided for an inverter system for use in a vehicle. The inverter system comprises a six-phase motor having a first set of three-phase windings and a second set of three-phase windings and a three-phase motor having a third set of three-phase windings, wherein the third set of three-phase windings is coupled to the first set of three-phase windings and the second set of three-phase windings. The system further comprises a first energy source coupled to a first inverter adapted to drive the six-phase motor and the three-phase motor, wherein the first set of three-phase windings is coupled to the first inverter, and a second energy source coupled to a second inverter adapted to drive the six-phase motor and the three-phase motor, wherein the second set of three-phase windings is coupled to the second inverter. A controller is coupled to the first inverter and the second inverter.
Abstract:
A method for controlling an induction machine having a rotor includes the steps of obtaining a torque command, calculating an estimated squared value of resistance of the rotor using the torque command, determining an offset for the resistance of the rotor, and generating an updated measure of rotor resistance using the estimated squared value and the offset.
Abstract:
Systems and apparatus are provided for an inverter system for use in a vehicle having a first energy source and a second energy source. The inverter system comprises an electric motor having a first set of windings and a second set of windings. The inverter system further comprises a first inverter coupled to the first energy source and adapted to drive the electric motor, wherein the first set of windings are coupled to the first inverter. The inverter system also comprises a second inverter coupled to the second energy source and adapted to drive the electric motor, wherein the second set of windings are coupled to the second inverter. A controller is coupled to the first inverter and the second inverter to achieve desired power flow between the first energy source, the second energy source, and the electric motor.
Abstract:
Methods and systems are provided for producing a commanded torque in an electric motor in a vehicle. A method comprises obtaining a torque command, obtaining a speed of the electric motor, and operating the inverter based at least in part on a voltage command that corresponds to minimal current through the electric motor for producing the commanded torque at the instantaneous speed of the electric motor.
Abstract:
Methods and systems are provided for controlling an electric motor in a vehicle. A method comprises measuring current associated with a first phase of the electric motor using a first current sensor resulting in a measured first phase current and measuring current associated with a second phase of the electric motor using a second current sensor resulting in a measured second phase current. The method further comprises determining a target value for the measured second phase current based on a value corresponding to a peak current for the first phase and identifying a current sensor error based on a difference between the measured second phase current and the target value.
Abstract:
Methods and systems are provided for operating an electric motor having at least one winding coupled to first and second power supplies. A torque command for the electric motor is received. A present power reserve for the first and second power supplies is determined based at least in part on the torque command. An operating voltage for the second power supply is determined based on the present power reserve. The operating voltage for the second power supply is applied to the at least one winding. The application of the operating voltage allowing the present power reserve to flow between the first and second power supplies and the motor.
Abstract:
Electric motor systems are provided for use in vehicles. In an embodiment, by way of example only, the system includes a first inverter, a second inverter, and a motor electrically coupled to the first and the second inverters. The motor includes a stator including a plurality of slots formed therein and a plurality of windings. The plurality of windings is disposed at least partially in the slots, and each winding includes a first coil and a second coil. The first coil has a first number of turns, and the second coil has a second number of turns that is unequal to the first number of turns. The first coil of each winding is electrically coupled to the first inverter, and the second coil of each winding is electrically coupled to the second inverter.