Abstract:
Methods and systems for operating an inverter having a plurality of high switches and a plurality of low switches coupled to an electric motor are provided. An event indicative of deceleration of the electric motor is detected. The inverter is alternated between a first mode of operation and a second mode of operation during the deceleration of the electric motor. In the first mode of operation, each of the plurality of high switches is activated and each of the plurality of low switches is deactivated or each of the plurality of low switches is activated and each of the plurality of high switches is deactivated. In the second mode of operation, each of the plurality of high switches is deactivated and each of the plurality of low switches is deactivated.
Abstract:
Methods and systems for controlling an electric motor are provided. The motor includes a plurality of windings. Each winding is coupled to a respective set of first and second switches. The first switch of each set of switches is simultaneously activated. Current flow through the plurality of windings is measured while the first switch of each set of switches is activated. The electric motor is controlled according to a first motor control method if the measured current is below a predetermined threshold. The electric motor is controlled according to a second motor control method if the measured current is above the predetermined threshold.
Abstract:
Methods and systems are provided for monitoring an automotive electrical system including an inverter having at least one switch. First and second voltage commands corresponding to respective first and second components of a commanded voltage vector on a synchronous frame of reference coordinate system are received. A plurality of duty cycles for operating the at least one switch are calculated based on the first and second voltage commands. First and second actual voltages are calculated based on the plurality of duty cycles. The first and second actual voltages correspond to respective first and second components of an actual voltage vector on the synchronous frame of reference coordinate system. An indication of a fault is generated based on the difference between the first components of the commanded voltage vector and the actual voltage vector and the difference between the second components of the commanded voltage vector and the actual voltage vector.
Abstract:
Systems and methods are provided for monitoring current in an electric motor. An electrical system includes a (DC) interface, an electric motor, an inverter module coupled between the DC interface and the electric motor, a first current sensor between a first phase leg of the inverter module and a first phase of the electric motor to measure a first current flowing through the first phase of the electric motor, a second current sensor between the first phase leg and the DC interface to measure a second current flowing through the first phase leg, and a control module coupled to the first current sensor and the second current sensor. The control module is configured to initiate remedial action based at least in part on a difference between the first current measured by the first current sensor and the second current measured by the second current sensor.
Abstract:
Methods and systems for operating an inverter coupled to an electric motor are provided. The inverter has a plurality of high switches and a plurality of low switches coupled to the electric motor. An event indicative of deceleration of the electric motor is detected. The inverter is alternated between a first mode of operation and a second mode of operation during the deceleration of the electric motor. In the first mode of operation, each of the plurality of high switches is activated and each of the plurality of low switches is deactivated. In the second mode of operation, each of the plurality of low switches is activated and each of the plurality of high switches is deactivated.
Abstract:
Methods and systems for operating an inverter having a plurality of high switches and a plurality of low switches coupled to an electric motor are provided. An event indicative of deceleration of the electric motor is detected. The inverter is alternated between a first mode of operation and a second mode of operation during the deceleration of the electric motor. In the first mode of operation, each of the plurality of high switches is activated and each of the plurality of low switches is deactivated or each of the plurality of low switches is activated and each of the plurality of high switches is deactivated. In the second mode of operation, each of the plurality of high switches is deactivated and each of the plurality of low switches is deactivated.
Abstract:
Methods and systems are provided for controlling the charging of an onboard energy storage system of a plug-in vehicle using a remote command center, such as a vehicle telematics service. An embodiment of such a method involves the transmission of a charge request for the onboard energy storage system to a remote command center associated with the plug-in vehicle. In response to the charge request, a charge command is received from the remote command center. The charging of the onboard energy storage system is regulated in accordance with the received charge command, which may be a charge enable command or a charge disable command.
Abstract:
Systems and methods are provided for charging energy sources with a rectifier using a double-ended inverter system. An apparatus is provided for an electric drive system for a vehicle. The electric drive system comprises an electric motor configured to provide traction power to the vehicle. A first inverter is coupled to the electric motor and is configured to provide alternating current to the electric motor. A first energy source is coupled to the first inverter, wherein the first inverter is configured to provide power flow between the first energy source and the electric motor. A second inverter is coupled to the electric motor and is configured to provide alternating current to the electric motor. A rectifier is coupled to the second inverter and configured to produce a direct current output. The second inverter is configured to provide power from the rectifier to the electric motor.
Abstract:
Systems and apparatus are provided for an inverter module for use in a vehicle. The inverter module comprises a first electrical base and a second electrical base each having an electrically conductive mounting surface, wherein the electrical bases are physically distinct and electrically coupled. A first semiconductor switch has a surface terminal that is coupled to the electrically conductive mounting surface of the first electrical base. A second semiconductor switch has a surface terminal that is coupled to the electrically conductive mounting surface of the first electrical base. A first semiconductor diode and a second semiconductor diode each have a surface terminal, the surface terminals are coupled to the electrically conductive mounting surface of the second electrical base. The first semiconductor switch and first semiconductor diode are antiparallel, and the second semiconductor switch and second semiconductor diode are antiparallel.
Abstract:
Methods and systems for controlling an electric motor are provided. The electric motor includes at least one winding. A winding current flowing through the at least one winding is monitored. The winding current has an oscillating component and an offset component. The offset component of the winding current is isolated from the oscillating component of the winding current. The electric motor is controlled based on the offset component of the winding current.