Abstract:
A method for making an activated carbon supported catalyst, the method comprising combining a carbon precursor and a catalyst precursor, curing the carbon precursor if necessary, carbonizing the carbon precursor, and activating the carbon to produce the activated carbon supported catalyst. The activated carbon supported catalyst can take the form of a coating on a substrate, a powder, or a monolithic body.
Abstract:
An asymmetric bis-silane compound of the formula A3Si—R1—SiB3 where A, B, and R1 are as defined herein, and to methods for making the bis-silane compound and their use to form layers or films of metal oxide particles, and which layers or films adhere to a suitable substrate. The materials and methods can be used, for example, to make photoactive devices.
Abstract:
The present invention provides doped titania-doped silica glass articles having low thermal expansions and low variations in thermal expansion. According to one embodiment of the invention, a titania-doped silica glass article has a titania content of between about 5 wt % and about 9 wt %; a coefficient of thermal expansion of between about −30 ppb/° C. and about +30 ppb/° C. at a temperature between 15° C. and 30° C.; and a variation in coefficient of thermal expansion of less than about 5 ppb/° C. at a temperature between 15° C. and 30° C.
Abstract:
The present invention relates to an ordered mesoporous carbon and method for manufacturing the ordered mesoporous carbon which is made from a surfactant, a carbon precursor, water (possibly mixed with an acid) and a water immiscible oil. In addition, the present invention relates to a method of formulating a composition which is used to manufacture the ordered mesoporous carbon. Moreover, the present invention relates to an activated carbon which is made by partially oxidizing an ordered mesoporous carbon.
Abstract:
The present invention provides doped titania-doped silica glass articles having low thermal expansions and low variations in thermal expansion. According to one embodiment of the invention, a titania-doped silica glass article has a titania content of between about 5 wt % and about 9 wt %; a coefficient of thermal expansion of between about −30 ppb/° C. and about +30 ppb/° C. at a temperature between 15° C. and 30° C.; and a variation in coefficient of thermal expansion of less than about 5 ppb/° C. at a temperature between 15° C. and 30° C.
Abstract:
The present invention provides an athermalized organic-containing overclad integrated planar optical waveguide circuit device in which thermal induced shifting of channel wavelengths is minimized. The organic-containing overclad material is combined with a silica or doped silica glass material in the form of a local overclad, a bi-layer overclad, or a hybrid overclad. The organic-containing overclad material is a polymer or a sol-gel material.
Abstract:
A method for making an activated carbon-supported catalyst involves providing an inorganic support having a continuous coating of activated carbon, activated carbon being derived from a synthetic carbon precursor, introducing a catalyst precursor into the pore structure of the activated carbon, and thermally treating the catalyst precursor to form an activated carbon-supported catalyst.
Abstract:
A UV light-curable composition comprises: (a) a first component, said first component being UV light-polymerizable polymer having a first index of refraction; and (b) a second component, the second component being UV light-polymerizable monomer having a second index of refraction, the second index of refraction being higher than said first index of refraction; wherein the first component polymerizes slower upon exposure to UV radiation than the second component.
Abstract:
A method of making an in situ shaped optical element on the terminal end of an optical fiber, and the resultant optical fiber component for manipulating light entering or exiting the terminal end of an optical fiber. The in situ shaped optical element is preferably an inorganic-organic hybrid sol-gel material which is adhered to the terminal end of the optical fiber and shaped in place to define an optical element or surface.
Abstract:
A passive temperature-compensated integrated optical component having an array of adjacent waveguides, and a slab waveguide located within a groove at an intermediate section of the array. The waveguides have an index of refraction that increases with increasing temperature, and the slab waveguide has an index of refraction that decreases with increasing temperature. The slab waveguide compensates for a temperature-induced change in the refractive index of the waveguides to maintain a generally constant optical path difference between the adjacent waveguides over a temperature range.