Abstract:
The disclosure is directed to techniques for remote management of information relating to therapy delivered to a patient by an implantable medical device (IMD). A remote monitoring system for therapy programming includes an IMD that delivers therapy, e.g., neurostimulation, drug therapy, or both, to a patient, an external programming device associated with the IMD, such as a patient programmer, and a remote networking device that receives usage information from the external programming device. The external programming device communicates with the IMD via local, wireless communication, and the remote networking device receives usage information from the external programming device via a network. The usage information includes information that relates to use of therapy by the patient, use of features of the external programming device and the IMD, or use of navigation patterns of a user interface of the external programming device.
Abstract:
The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. A user interface of a programmer allows a user to define stimulation therapy by interacting with one or more representations of the lead that delivers the therapy. The disclosure also contemplates selecting stimulation parameters to satisfy a user defined stimulation field by selecting one or more volumetric stimulation templates that best fit the stimulation field. The user interface may display the stimulation templates in relation to different perspectives of a lead and the stimulation field. Use of stimulation templates may simplify the determination of stimulation parameters in response to any of a variety of types of user definition of a stimulation field.
Abstract:
Method, controller and system for an implantable medical device having a plurality of electrodes, the implantable medical device capable of delivering therapeutic stimulation to a patient, comprising a control module, a user interface operatively coupled to the control module, the user interface providing control of the control module by a medical professional or other user, and an electrode interface operatively coupled between the plurality of electrodes and the control module. The control module uses the electrode interface to obtain a plurality of measurements of integrity metrics for a plurality of selected pairs of individual ones of the plurality of electrodes. The control module determines a prescriptive analysis using the plurality of measurements of integrity metrics of the selected pairs of individual ones of the plurality of electrodes comparative to a range, and the user interface displays the prescriptive analysis.
Abstract:
In general, the disclosure is related to electrode-to-lead association using post-implant imaging. An image analysis unit may calculate distances between representations of electrodes in an electronic image and identify groups based on the calculated distances. Each identified group may include a plurality of electrode representations. The distance between a first electrode representation and a second electrode representation may be substantially a same distance between the second electrode representation and a third electrode representation. A characterization unit may determine one or more lead types based on the identified groups.
Abstract:
An implantable medical device delivers neurostimulation therapy to a patient according to a parameter set, which may consist of a number of programs that are delivered substantially simultaneously. When programming the implantable medical device for the patient, a clinician programmer may maintain a session log that includes a listing of programs delivered to the patient and rating information provided by a clinician and the patient for programs of the list. The listing may be ordered according to the rating information in order to facilitate the selection of programs for a parameter set. A program library that may include particularly effective programs may be stored in a memory. One or both of the implantable medical device and a patient programmer may store usage information that provides an objective and accurate record of therapy use by the patient, and allows a clinician to later improve the therapy based on the usage information.
Abstract:
Techniques for increasing the safety of medical device programming using general purpose hardware, such as a general purpose personal computer, are described. Some embodiments include a watchdog module that is serviced by the general purpose hardware, a mediator module that monitors programming instructions from the general purpose hardware, and/or a safe mode input that may be activated by a user. In some embodiments, a system comprises an implantable medical device, an intermediate device, a computing device that communicates with the implantable medical device via the intermediate device. The intermediate device may provide any one or more of the safety measures described above. In some embodiments, the intermediate device is dedicated hardware, and critical programming functions are provided by the intermediate device, rather than the general purpose hardware. In some embodiments, an implantable medical device provides one or more of the above-discussed safety features, rather than a separate intermediate device.
Abstract:
Techniques for selecting electrode combinations for stimulation therapy include delivering stimulation via each of at least five combination groups. A first group of electrode combinations is characterized by the presence of a caudal anode. A second group of electrode combinations is characterized by the presence of a rostral anode. A third group of electrode combinations is characterized by the presence of a single anode above and a single anode below the cathode(s) of the combination. A fourth group of electrode combinations is characterized by the presence of multiple anodes above and below the cathode(s) of the combination. A fifth group of electrode combinations is characterized by the presence of transverse anodes. A sixth group of electrode combination is characterized by at least one off-center cathode. One or more preferred electrode combinations groups, and/or a number of leads to implant within the patient, may by selected based on patient feedback.
Abstract:
The present invention provides an apparatus and a method for producing a virtual electrode within or upon a tissue to be treated with radio frequency alternating electric current, such tissues including but not limited to liver, lung, cardiac, prostate, breast, and vascular tissues and neoplasms. An apparatus in accord with the present invention includes a supply of a conductive or electrolytic fluid to be provided to the patient, an alternating current generator, and a processor for creating, maintaining, and controlling the ablation process by the interstitial or surficial delivery of the fluid to a tissue and the delivery of electric power to the tissue via the virtual electrode. A method in accord with the present invention includes delivering a conductive fluid to a predetermined tissue ablation site for a predetermined time period, applying a predetermined power level of radio frequency current to the tissue, monitoring at least one of several parameters, and adjusting either the applied power and/or the fluid flow in response to the measured parameters.
Abstract:
In general, the invention is directed to a technique for selection of parameter configurations for a neurostimulator using genetic algorithms. The technique may be employed by a programming device to allow a clinician to select parameter configurations, and then program an implantable neurostimulator to deliver therapy using the selected parameter configurations. In operation, the programming device executes an electrode configuration search algorithm to guide the clinician in the selection of electrode configurations. The search algorithm relies on a genetic algorithms to identify potential optimum electrode configurations within an electrode set. The genetic algorithms provide guidance in the electrode configuration selections process, interactively guiding the clinician by suggesting the configurations that are most likely to be efficacious given the results of tests already performed during an evaluation session.
Abstract:
Disclosed is a method and apparatus for configuring an external device so that may communicate with and an implantable medical device in accordance with a desired telemetry protocols. The external device utilizes a configurable telemetry module that comprises a protocol driver that interacts with a transmit driver and a receive driver, both of which can be configured to process a telemetry signal in accordance with the necessary telemetry protocol for communicating with the implantable medical device. Once the transmit and receive drivers are configured, the telemetry module and its associated external device, e.g., a physician programmer, are enabled to communicate with the implantable medical device.