Abstract:
An inkjet printer for preventing ink flow, color blurring and color mixing during multicolor printing when image formation is performed with aqueous ink on a web-shaped printing base material, and an inkjet printing method using the inkjet printer. The inkjet printer is configured to perform image formation by discharging aqueous ink to a web-shaped printing base material, and includes: a conveyance mechanism configured to continuously convey the web-shaped printing base material; a single-pass system inkjet head configured to discharge the aqueous ink to a surface of the web-shaped printing base material conveyed by the conveyance mechanism; and a surface pre-heating unit arranged on an upstream side of conveyance from the single-pass system inkjet head and configured to heat at least the surface of the web-shaped printing base material. Image formation is performed on the web-shaped printing base material heated by the surface pre-heating unit.
Abstract:
Provided is a gripping portion structure of a gravure plate-making robot in which the accurate gripping of an unprocessed plate-making roll and the positioning accuracy during transfer of the unprocessed plate-making roll to each processing device can be improved by causing a gravure plate-making robot to exhibit a high gripping force when gripping the unprocessed plate-making roll. The gripping portion structure of a gravure plate-making robot to be used in a fully automatic gravure plate-making processing system for manufacturing a gravure plate-making roll by gripping and transferring an unprocessed plate-making roll to each processing device includes: a pair of gripping plates to be mounted on an arm distal end of the gravure plate-making robot, the pair of gripping plates being freely spaced widely or narrowly from each other, and being configured to grip both end portions of the unprocessed plate-making roll; and a gripping surface forming member provided on each of the pair of gripping plates, the gripping surface forming member having a gripping surface that is curved so as to be recessed toward a center of the end portion of the unprocessed plate-making roll to be gripped and having a non-slip function.
Abstract:
Provided are a surface drying device for a sheet-like non-permeable base material with enhanced drying efficiency on a surface of a sheet-like non-permeable base material having a liquid adhering to a surface thereof, and a printing apparatus and a printing method using the surface drying device. The surface drying device for a sheet-like non-permeable base material includes: a loading port for loading a sheet-like non-permeable base material with a liquid adhering surface; an air nozzle configured to spray high-temperature air; an unloading port for unloading the sheet-like non-permeable base material; an air shield zone forming portion, which is formed between the loading port and the unloading port, and is configured to form a heat-insulating air shield so as to cover the liquid adhering surface of the sheet-like non-permeable base material; and a retained air exhaust portion configured to exhaust retained air retained on the liquid adhering surface of the sheet-like non-permeable base material to outside of the air shield zone forming portion through use of a Coanda effect, to thereby replace liquid adhering surface air on the liquid adhering surface of the sheet-like non-permeable base material.
Abstract:
Provided are an inkjet printer for both surface printing and back printing which is capable of performing both of surface printing and back printing while continuously conveying a web-shaped print base material (12) at high speed, and an inkjet printing method using the inkjet printer. The inkjet printer includes: a first white inkjet head (20a) configured to discharge a white aqueous ink to a surface of the web-shaped print base material (12) in a case of surface printing; a first drum-type drying unit (22a) configured to dry the white aqueous ink in the case of surface printing; a second white inkjet head (20b) configured to discharge a white aqueous ink to a surface of the web-shaped print base material (12) in a case of back printing; and a second drum-type drying unit (22b) configured to dry the white aqueous ink in the case of back printing.
Abstract:
Provided is an aqueous gravure ink that is environmentally friendly, allows high-resolution printing by virtue of its excellent highlight suitability, and is excellent in drying property. The aqueous gravure ink comprises: a pigment; a polymer; a water-soluble organic solvent; a surfactant; and water, in which the water-soluble organic solvent has a boiling point of 100° C. or more and 260° C. or less, in which a content of the water-soluble organic solvent in the aqueous gravure ink is 10 mass % or more and 35 mass % or less, and in which a content of the water in the aqueous gravure ink is 50 mass % or more and 70 mass % or less.
Abstract:
Provided is a gravure printing apparatus, a gravure printing method, and a printed matter manufacturing method in which the ink transfer characteristics in gravure printing are controlled to be improved. The gravure printing apparatus includes: a gravure plate cylinder; a doctor blade configured to scrape off a superfluous ink from a plate surface of the gravure plate cylinder; an impression cylinder configured to press a base material to be printed against the plate surface to transfer the ink remaining in a cell of the gravure plate cylinder; and a transfer characteristics control mechanism configured to control ink transfer characteristics by supplying a gas selected from the group consisting of air having predetermined humidity, dry air, and an inert gas to at least a part of an ink transfer characteristics control area between an ink scraping-off point of the doctor blade on the plate surface and a pressing point of the impression cylinder on the plate surface.
Abstract:
A gravure printing plate and a method of manufacturing a gravure printing plate, which are capable of increasing a density range as compared to the conventional case to enable suppression of moire as well as to achieve rich gradation and enable fine tone settings. The gravure printing plate includes FM screen cells and AM screen cells which are concurrently formed in a plate surface thereof, and the FM screen cells and the AM screen cells are different in depth. It is preferred that, of the cells which are different in depth, shallower cells correspond to subcells and deeper cells correspond to main cells.
Abstract:
Provided are a seamless cylindrical offset printing plate which enables seamless continuous printing to be performed, a manufacturing method therefor, and a reproduction processing method. The seamless cylindrical offset printing plate comprises: a cylindrical plate base material; a hydrophilic satin-like rough surface which is formed on a surface of the cylindrical plate base material; and a hydrophobic resist pattern part which is formed on the satin-like rough surface, wherein an exposed part of the satin-like rough surface serves as a non-printing area and the resist pattern part serves as a printing area.
Abstract:
Provided are a cylinder plating apparatus and a cylinder plating method, in which the distance between an insoluble electrode and a cylinder to be processed can be kept constant regardless of the diameter of the cylinder to be processed, and the surface area of the insoluble electrode is increased to reduce the current density of the insoluble electrode, thereby being capable of reducing burden on the insoluble electrode. The cylinder plating apparatus is configured to plate an outer peripheral surface of the cylinder to be processed in such a manner that a pair of the insoluble electrodes each having a shape in which at least a lower part thereof is curved inward and being constructed such that at least the lower part has a comb-like portion are brought close to both side surfaces of the cylinder to be processed with predetermined intervals. The insoluble electrodes face each other in a staggered pattern so that projections of the comb-like portion of one of the insoluble electrodes are located at positions of recesses of the comb-like portion of another one of the insoluble electrodes. The insoluble electrode is configured to rotate about an upper end of the insoluble electrode so that the distance of closeness of the insoluble electrode to the outer peripheral surface of the cylinder to be processed is adjustable depending on the diameter of the cylinder to be processed.
Abstract:
Provided are a modular processing unit that is standardizable, capable of enhancing production efficiency, and is also flexibly customizable, and a fully automatic gravure cylinder manufacturing system using the modular processing unit. The modular processing unit includes a pair of frame members provided upright so as to face each other, a first processing module including a first processing bath module, a first beam module provided horizontal to a floor, and a first chuck module, and a second processing module including a second processing bath module, a second beam module provided horizontal to the floor, and a second chuck module. The modular processing unit has multi-stage structure with at least the first processing module and the second processing module being assembled onto the frame members.