Abstract:
A method of sub-channel feedback in OFDMA systems is provided. A wireless receiving device (STA) receives a radio signal from a transmitting device (AP) over a wide channel in an OFDMA system. The radio signal is transmitted over multiple sub-channels of the wide channel. The STA estimates channel quality information based on the received radio signal for each sub-channel. The STA then sends feedback information to the transmitting device. The feedback information comprises the estimated channel quality information for a selected subset of sub-channels from the wide channel based on a predefined rule. In one embodiment, the feedback information is embedded within an ACK/BA frame or is carried in a frame immediately subsequent to the ACK/BA frame.
Abstract:
Varying embodiments of the present invention describe a closed loop system for processing the beamforming information, qualifying the expected performance, activating and deactivating the beamforming system. A first embodiment is a method for closed loop beamforming in a wireless communication system, the system comprising a transmitter and a receiver, the method comprising initiating beamforming on a communication channel between the transmitter and the receiver, monitoring the communication channel, periodically determining a condition of the communication channel and controlling beamforming based on the condition of the communication channel.
Abstract:
A modem system for transmitting and receiving signals having a frequency domain equalizer (FEQ) being responsive to a plurality of received data symbols for processing the same to generate one or more equalized data symbols, said modem system being responsive to a plurality of received baseband signals for processing the same to generate said plurality of received data symbols, said plurality of received data symbols for including one or more sets of pilot tones, said FEQ for processing said sets of pilot tones to generate one or more sets of equalized sets of pilot tones, in accordance with an embodiment of the present invention. The modem system further includes a frequency offset detection module being responsive to said sets of equalized pilot tones to generate one or more instantaneous carrier offsets, said modem system for processing said instantaneous carrier offsets to generate one or more frequency corrections for applying the same to said plurality of received baseband signals to remove carrier offsets therefrom, wherein the flexible architecture of said modem system allows for removal of said carrier offsets to improve reception of said plurality of received baseband signals.
Abstract:
A maximum likelihood sequence estimator (MLSE) equalizer device being included in an MLSE sub-receiver includes a feedforward circuit responsive to input data for processing the same to generate feedforward circuit output, said input data being generated from transmitted data being transmitted by wireless transmission, in accordance with an embodiment of the present invention. The MLSE equalizer device further includes a feedback circuit responsive to said input data for processing the same to generate feedback circuit output. The MLSE equalizer device further includes an equalizer training module responsive to said feedforward circuit output and said feedback circuit output for training said MLSE equalizer device by minimizing the difference between said feedforward circuit output and said feedback circuit output, said MLSE equalizer device being trained to generate equalized data, said MLSE sub-receiver for decoding said equalized data to generate decoded transmitted data by mitigating the effects of multi-path communication channel due to wireless transmission of said transmitted data.
Abstract:
A method of direction finding (DF) positioning in a wireless location area network (WLAN) is proposed. A multiple antenna IEEE 802.11 transmitting device can transmit signal preamble containing multiple Long Training Field (LTF) symbols in a radio frame from multiple antennas simultaneously, which allows a receiving device to resolve multiple DF sounding signals transmitted from the multiple antennas. As a result, angle of departure (AoD) of the transmitting device can be estimated by using the multiple resolved DF sounding signals from each antenna for DF positioning purpose.
Abstract:
A method for identifying source BSS in WLAN is proposed. A high efficiency (HE) access point (AP) sends a packet containing a basic service set (BSS) color to a HE station. The HE AP also sends a packet containing an assigned association identification (AID) to a very high throughput (VHT) station. The assigned AID comprises at least part of the BSS color information. The VHT station therefore sends a packet containing the at least part of the BSS color information such that any AP or station that receives the packet can determine the BSS the VHT station is in.
Abstract translation:提出了一种识别WLAN中源BSS的方法。 高效(HE)接入点(AP)向HE站发送包含基本服务集(BSS)颜色的分组。 HE AP还将包含分配的关联标识(AID)的分组发送到非常高的吞吐量(VHT)站。 分配的AID包括BSS颜色信息的至少一部分。 因此,VHT站发送包含BSS颜色信息的至少一部分的分组,使得接收分组的任何AP或站可以确定VHT站所在的BSS。
Abstract:
A first embodiment is a method of calibrating an implicit beamforming wireless system wherein the implicit wireless system comprises a beamformer and a beamformee. The method comprises associating the beamformer with the beamformee, sending a sounding packet from the beamformer to the beamformee, receiving a sounding response at the beamformer wherein the sounding response contains explicit channel state information as estimated by beamformee, computing implicit channel state information at the beamformer based on transmissions from the beamformee, passing explicit and implicit channel state information into the beamformer, computing a set of compensation parameters and loading the set of compensation parameters into the beamformer thereby enabling the beamformer to implicitly beamform to a device that does not support explicit beamforming.
Abstract:
The present invention relates generally to wireless transceivers, and more particularly but not exclusively to non 802.11 detection and avoidance methodologies for wireless devices including transceivers. In one or more implementations, a method for detecting non 802.11 operating in the unlicensed 5.25-5.35 and 5.47-10.725 GHz radio bands, using wireless devices, such as AP, are provided. An AP is used to automatically detect the presence of non 802.11 on all channels in these bands, alert all of its clients, and move to another channel that is known to be devoid of non 802.11 using one or more implementations.
Abstract:
A first embodiment is a method of calibrating an implicit beamforming wireless system wherein the implicit wireless system comprises a beamformer and a beamformee. The method comprises associating the beamformer with the beamformee, sending a sounding packet from the beamformer to the beamformee, receiving a sounding response at the beamformer wherein the sounding response contains explicit channel state information as estimated by beamformee, computing implicit channel state information at the beamformer based on transmissions from the beamformee, passing explicit and implicit channel state information into the beamformer, computing a set of compensation parameters and loading the set of compensation parameters into the beamformer thereby enabling the beamformer to implicitly beamform to a device that does not support explicit beamforming.
Abstract:
A multi input multi output (MIMO) system for transmitting and receiving packets having a nested preamble format included in said packets and having poly-carrier long training sequence (LTS) and signal field (SIG) for training receivers, in accordance with an embodiment of the present invention. Said packets being transmitted using the modulation scheme of a wireless local area network (WLAN) standard, said nested preamble format for allowing said receivers to use one or more receiver antennas to interpret said LTS and said SIG to increase the efficiency of said MIMO system.