Abstract:
An optical data storage system comprises a multiple data surface medium and optical head. The medium comprises a plurality of substrates separated by a light transmissive medium. Data surfaces are located on the substrate surfaces which lie adjacent a light transmissive medium. The data surfaces are substantially light transmissive. The optical head includes an aberration compensator to allow the head to focus onto the different data surfaces and a filter to screen out unwanted reflected light.
Abstract:
A mask is used to remove substantially all of the first order diffraction components of a reflected light beam which are generated as the beam crosses grooved data tracks in an optical media. The mask may comprise a transparent substrate with an opaque layer having a pair of circular apertures or a bow-tie shaped aperture. The apertures are located outside the regions of interference between the diffracted components and the undiffracted component. The layer may be made of a reflective material for reflecting diffracted components of the reflected beam to a tracking error sensor. The layer may be made of a holographic material for deflecting the diffracted components to a tracking error sensor.
Abstract:
A holographic mirror is used in an optical storage head to diffract a laser beam perpendicularly to the optical medium and also to focus the beam onto the optical medium. The mirror can also function to cause circularization of a collimated laser beam of elliptical cross-section.
Abstract:
An apparatus, system, and method for measuring thermally induced electric resistance changes in thermally assisted magnetic recording are disclosed for monitoring laser light output in thermally assisted magnetic recording disk drives. An electrical lead is coupled to a read/write head element. A first electrical resistance in the read/write head element is measured. The read/write head is heated by a laser and a second electrical resistance in the read/write head element is measured. The electrical resistance may be monitored at regular intervals when the read/write head element is on the ramp or the electrical resistance measurements may be continuously monitored as the read/write head flies over the magnetic media.
Abstract:
A hermetic sealing approach involves welding an Aluminum cover onto a low-cost Aluminum housing. According to an example embodiment of the present invention, a metal housing having a base and sidewalls extending upward therefrom is adapted to receive and couple to an HDD arrangement. The metal housing is formed using material and processing (e.g., cold formed or die cast Aluminum) that are relatively inexpensive. A feedthrough arrangement including a plurality of communication pins extends through an opening in the base and is coupled thereto, with the communication pins adapted to pass signals between the inside and the outside of the metal housing. A metal cover is welded to an upper portion of the sidewalls and, with the feedthrough arrangement, hermetically seals the metal housing.
Abstract:
A magnetooptical disk has two axially space-apart translucent recording layers. Each translucent recording layer is axially closer to an outer surface of the disk than to the other recording layer. This geometry enables closely axially disposing a magnetic field biasing means to each of the recording layers from opposite axial sides of the disk, respectively. Laser beams are axially introduced into the disk to pass through one of the translucent recording layers in a defocussed state to reach a second recording layer in a focussed state. In this manner, recording in the second layer is effected by a modulated magnetic bias field using a constant intensity laser beam. Two sets of laser beams and magnetic biasing means are provided for recording on both data in both of the recording layers.
Abstract:
An optical data storage system comprises a multiple data surface medium and optical head. The medium comprises a plurality of substrates separated by a light transmissive medium. Data surfaces are located on the substrate surfaces which lie adjacent a light transmissive medium. The data surfaces are substantially light transmissive. The optical head includes an aberration compensator to allow the head to focus onto the different data surfaces and a filter to screen out unwanted reflected light.
Abstract:
An optical data storage system comprises a multiple data surface medium and optical head. The medium comprises a plurality of substrates separated by a light transmissive medium. Data surfaces are located on the substrate surfaces which lie adjacent a light transmissive medium. The data surfaces are substantially light transmissive. The optical head includes an aberration compensator to allow the head to focus onto the different data surfaces and a filter to screen out unwanted reflected light.