摘要:
The present invention provides a spacer placed between a top substrate and a bottom substrate for a field emission display device. The spacer comprises at least two insulating layers for electrical insulation; and at least one metal layer sandwiched between the insulating layers, wherein the metal layer has plural apertures for electrons passing therethrough and disturbing pathway of electrons as the electrons impact the apertures.
摘要:
A non-volatile memory comprising a substrate, a stacked gate structure, a conductive spacer, an oxide/nitride/oxide layer, buried doping regions, a control gate and an insulating layer. The stacked gate structure is disposed on the substrate. The stacked gate structure comprises a gate dielectric layer, a select gate and a cap layer. The conductive spacer is disposed on the sidewalls of the stacked gate structure. The oxide/nitride/oxide layer is disposed between the conductive spacer and the stacked gate structure and between the conductive spacer and the substrate. The buried doping regions are disposed in the substrate outside the conductive spacer on each side of the stacked gate structure. The control gate is disposed over the stacked gate structure and electrically connected to the conductive spacer. The insulating layer is disposed between the buried doping layer and the control gate.
摘要:
A loading and unloading mechanism adopted for use on removable power supply modules includes in one embodiment a connection plug installed on a removable power supply and a connection trough connected to a power supply circuit of a system end (such as a personal computer). Another embodiment includes a connection trough on a system end to be installed on a holding unit which is movable to adjust the position relative to the system end according to the size of the removable power supply so that the removable power supply can be fully loaded into the computer. The loading and unloading mechanism thus formed can be adapted for the removable power supply of varying sizes and specifications.
摘要:
A static random access memory (SRAM) cell structure at least comprising a substrate, a transistor, an upper electrode and a capacitor dielectric layer. A device isolation structure is set up in the substrate to define an active region. The active region has an opening. The transistor is set up over the active region of the substrate. The source region of the transistor is next to the opening. The upper electrode is set up over the opening such that the opening is completely filled. The capacitor dielectric layer is set up between the upper electrode and the substrate.
摘要:
A static random access memory (SRAM) cell structure at least comprising a substrate, a transistor, an upper electrode and a capacitor dielectric layer. A device isolation structure is set up in the substrate to define an active region. The active region has an opening. The transistor is set up over the active region of the substrate. The source region of the transistor is next to the opening. The upper electrode is set up over the opening such that the opening is completely filled. The capacitor dielectric layer is set up between the upper electrode and the substrate.
摘要:
A power supply having an extendable power input port connecting to a connection line to be installed on a side wall of a computer host. The side wall and the power supply form a heat dissipation passage therebetween to improve heated airflow in the computer host and increase heat dissipation effect without affecting electric plugging of the power supply.
摘要:
A method of fabricating a bottom electrode is described. A substrate having a first conductive layer therein is provided. A first dielectric layer is formed over the substrate. A plurality bit lines is formed over the first dielectric layer. A conformal liner layer is formed over the first dielectric layer to cover the plurality bit lines. A second dielectric layer is formed over the conformal liner layer. An opening is formed in the second dielectric layer. The opening exposes a portion of the conformal liner layer between the bit lines and the conformal liner layer on portions of the bit lines. A conductive spacer is formed on a sidewall of the opening to expose a portion of the conformal liner layer between the bit lines. The exposed portion of the conformal liner layer between the bit lines is removed. The first dielectric layer exposed by the conductive spacer and the second dielectric layer are removed to form a node contact opening in the first dielectric layer. The node contact opening exposes the conductive layer. A second conductive layer is formed to fill the node contact opening.
摘要:
An ion implantation method useful for fabricating shallow trench isolation structureimplants phosphorus ions instead of arsenic ions into a substrate when the source/drain regions of an NMOS device are doped. Alternatively, low energy ions are used in the ion implantation for forming the source/drain regions of an NMOS device. Consequently lattice dislocations of the crystal structure within a substrate is reduced and unwanted device leakage current is eliminated.
摘要:
The present invention provides a method of forming a self-aligned contact hole on a semiconductor wafer. The semiconductor wafer comprises a substrate, two gates positioned on the substrate, at least a doped area between the gates on the substrate and spacers on each of two opposite walls of each gate wherein the spacers between the gates are joined and cover the doped area. The method comprises forming a dielectric layer on the surface of the semiconductor wafer, the dielectric layer covering the gates and the spacers. A first etching process is performed to remove the dielectric layer above the doped area down to a predetermined depth to form an opening, the bottom of the opening comprising the spacers and an upper portion of the gates. Poly-silicon spacers are then formed on the interior walls of the opening, the poly-silicon spacers covering an upper portion of the spacers and the upper portion of the gates. A second etching process is performed to remove from between the poly-silicon spacers both the remaining dielectric layer and a lower portion of the spacers down to the surface of the doped area.
摘要:
The invention is related to a method for increasing margin precision of a self-aligned contact. A semiconductor has at least a gate electrode and source/drain, and a gate spacer is formed on the sidewall of the gate electrode. A first silicon oxide layer is then formed on the semiconductor substrate. A hard mask layer is formed on the first silicon oxide layer. A second silicon oxide layer is then deposited over the hard mask layer. A chemical mechanical polishing is then performed to remove the second silicon oxide layer so that the hard mask layer is planarized. Thereafter, the hard mask layer and the first silicon oxide layer is etched to form a gap region on the first silicon oxide layer. A polysilicon layer is then deposited over the entire substrate including the gap region and the hard mask layer. Thereafter, the polysilicon layer is etched back to form a polysilicon spacer. Finally, the gap region of the first silicon oxide layer is etched to form a self-aligned contact.