Abstract:
The present disclosure is directed to a MEMS-based rotation sensor for use in seismic data acquisition and sensor units having same. The MEMS-based rotation sensor includes a substrate, an anchor disposed on the substrate and a proof mass coupled to the anchor via a plurality of flexural springs. The proof mass has a first electrode coupled to and extending therefrom. A second electrode is fixed to the substrate, and one of the first and second electrodes is configured to receive an actuation signal, and another of the first and second electrodes is configured to generate an electrical signal having an amplitude corresponding with a degree of angular movement of the first electrode relative to the second electrode. The MEMS-based rotation sensor further includes closed loop circuitry configured to receive the electrical signal and provide the actuation signal. Related methods for using the MEMS-based rotation sensor in seismic data acquisition are also described.
Abstract:
At least one dip is determined using an estimator for the at least one dip based on measured multicomponent survey data. At least one wavefield for the at least one dip is estimated using a processing technique that employs matching pursuit.
Abstract:
Described herein are implementations of various technologies for a method for seismic data processing. The method may receive seismic data for a region of interest. The seismic data may be acquired in a seismic survey. The method may determine a seismic image based on the acquired seismic data and an earth model of the region of interest. The method may determine simulated seismic data based on the earth model. The method may determine an objective function that represents a mismatch between the acquired seismic data and the simulated seismic data. The method may determine a diffusion tensor using geological information from the seismic image. The method may update the earth model using the diffusion tensor with the objective function.
Abstract:
A multiple axis sensor assembly includes an enclosure and encapsulated microelectromechanical system (MEMS) sensors. The encapsulated sensors are disposed inside the enclosure and are mounted in different orientations, which correspond to different axes of the sensor assembly. A controller of the sensor assembly is disposed in the enclosure and electrically coupled to the MEMS sensors.
Abstract:
A technique includes determining an image of a subsurface geologic region of interest, where the image represents at least in part ghost energy that is attributable to reflections caused by a reflecting interface. The technique includes deghosting the image, which includes processing data representing the image in a processor-based machine to determine at least one impulse response of a modeling and migration of at least one point scatterer for the region and use the impulse response(s) to attenuate the ghost energy.
Abstract:
Systems, media, and methods for processing seismic data are disclosed. For example, in one embodiment, the method may include receiving a plurality of partial image partitions of a migrated seismic image, and stacking the plurality of partial image partitions such that a first image is generated. The method may also include aligning the plurality of partial image partitions based at least partially on the first image. Aligning may include adjusting at least one of the plurality of partial image partitions and generating a displacement field. The method may also include, based at least in part on the displacement field, stacking the plurality of aligned partial image partitions to generate a second image. The method may further include based at least in part on the second image, realigning the plurality of aligned partial image partitions.
Abstract:
A method and related apparatus are described for generating acoustic signals for use in a vibratory seismic survey, including at least two different sweep signals for the control of at least two different types of vibrators; and matching the phases of the different sweep signals at a transition frequency from one sweep signal to another.
Abstract:
Various implementations described herein are directed to a seismic survey using an augmented reality device. In one implementation, a method may include determining current location data of an augmented reality (AR) device in a physical environment. The method may also include receiving placement instructions for a first seismic survey equipment in the physical environment based on the current location data. The method may further include displaying the placement instructions in combination with a view of the physical environment on the AR device.
Abstract:
A system for storing seismic data recording units. The system may include a storage unit for storing the seismic data recording units. The system may also include a storage container disposed inside the storage unit. The storage container may define a volume of space in which the seismic data recording units are stored. The system may also include a cable coupled to one of the seismic data recording units. The cable may transfer seismic data from the one of the seismic data recording units to the storage unit.
Abstract:
A method for removing seismic noise from an input seismic trace. The method may receive the input seismic trace. The method may receive one or more noise references for the input seismic trace. The method may receive one or more filters corresponding to the noise references. The method may apply a nonlinear function to the input seismic trace and to the one or more noise references to produce respective output signals for the input seismic trace and for the one or more noise references. The nonlinear function may be capable of determining higher-order statistics. The method may update the filters based on increasing one or more information attributes of the output signals to a predetermined threshold. The method may then filter noise corresponding to the noise references.