Abstract:
Methods for latest producer tracking in a processor. In one embodiment, the method includes the steps of (1) writing a physical register identification value in a first register rename map location specified by a first instruction, (2) writing a first in-register status value in a second register rename map location specified by the first instruction, (3) writing a producer tracking status value at a producer tracking map location specified by the physical register identification value, and (4) modifying, upon graduation of the first instruction, the first in-register status value only if the producer tracking map location stores the producer tracking status value written in step (3). Other methods are also presented.
Abstract:
Methods for latest producer tracking in a processor. In one embodiment, the method includes the steps of (1) writing a physical register identification value in a first register rename map location specified by a first instruction, (2) writing a first in-register status value in a second register rename map location specified by the first instruction, (3) writing a producer tracking status value at a producer tracking map location specified by the physical register identification value, and (4) modifying, upon graduation of the first instruction, the first in-register status value only if the producer tracking map location stores the producer tracking status value written in step (3). Other methods are also presented.
Abstract:
This invention provides a method and apparatus that uses a mobility management server (MMS) device for supporting mobility management in wireless networks. With the MMS device for services of resource management and packet relay, this invention speeds up the handover procedure for a mobile device switching from a first network domain to a second network domain in a wireless network environment having a session initiation protocol (SIP) server. When the mobile device needs to switch to the second network domain, the MMS allocates the required resources for packet relay, provides the related information for the second network domain, and takes care of the packet relay. This invention shortens the inter-domain handover latency and reduces the number of lost packets during the handover procedure. Thereby, the transmission efficiency of the present invention meets the requirement for real-time multimedia applications.
Abstract:
A process for fabricating a MOSFET device, featuring source/drain extension regions, formed after the utilization of high temperature processes, such as heavily doped source/drain regions, has been developed. Disposable insulator spacers are formed on the sides of doped, SEG silicon regions, followed formation of a gate insulator layer, and an overlying gate structure, on a region of the semiconductor substrate located between the doped SEG silicon regions. The temperature experienced during these process steps result in the formation of the heavily doped source/drain, underlying the SEG silicon regions. Selective removal of the disposable spacers, allows the source/drain extension regions to be placed in the space vacated by the disposable spacers, adjacent to the heavily doped source/drain region. Insulator spacers are then used to fill the spaces vacated by removal of the disposable spacers, directly overlying the source/drain extension regions. Additional iterations include the use of an L shaped spacer, overlying the source/drain extension region, as well as the formation of metal silicide, on the doped SEG silicon regions, and on the gate structures.
Abstract:
A new method for forming a cobalt disilicide film on shallow junctions with reduced silicon consumption in the fabrication of an integrated circuit is described. A semiconductor substrate is provided having silicon regions to be silicided. A cobalt layer is deposited overlying the semiconductor substrate and subjected to a first rapid thermal process whereby the cobalt is transformed to cobalt monosilicide where it overlies the silicon regions and wherein the cobalt not overlying the silicon regions is unreacted. The unreacted cobalt layer is removed. A dielectric layer is deposited overlying the substrate and the cobalt monosilicide layer. Silicon ions are implanted through the dielectric layer into the cobalt monosilicide layer. The substrate is subjected to a second rapid thermal process whereby the cobalt monosilicide is transformed to cobalt disilicide wherein the silicon ions implanted into the cobalt monosilicide layer act as a main (not sole) silicon source for the transformation to complete formation of a cobalt disilicide film in the manufacture of an integrated circuit.
Abstract:
A method for forming a raised source and drain structure without using selective epitaxial silicon growth. A semiconductor substrate is provided having one or more gate areas covered by dielectric structures. Doped polysilicon structures are adjacent to the dielectric structures on each side and are co-planar with the dielectric structures from a CMP process. The first dielectric structures are removed to form gate openings and a liner oxide layer is formed on the bottom and sidewalls of the gate openings. Dielectric spacers are formed on the liner oxide layer over the sidewalls of the gate openings, and the liner oxide layer is removed from the bottom of the gate openings and from over the doped polysilicon structures. Source and drain regions are formed in the semiconductor substrate by diffusing impurity ions from the doped polysilicon layer. A gate oxide layer and a gate polysilicon layer are formed over the semiconductor structure and the gate polysilicon layer is planarized to form a gate electrode. In a key step, the dielectric spacers are removed to form spacer openings, and impurity ions are implanted through the spacer openings and annealed to form source and drain extensions. The dielectric spacers are reformed and a self-aligned silicide layer is formed on the doped polysilicon structure and the gate electrode. Alternatively, the self-aligned silicide layer can be formed prior to removing the dielectric spacers and implanting ions to form source and drain extensions.
Abstract:
A conditional move instruction implemented in a processor by forming and processing two decoded instructions, and applications thereof. In an embodiment, the conditional move instruction specifies a first source operand, a second source operand, and a third operand that is both a source and a destination. If the value of the second operand is not equal to a specified value, the first decoded instruction moves the third operand to a completion buffer register. If the value of the second operand is equal to the specified value, the second decoded instruction moves the value of the first operand to the completion buffer. When the decoded instruction that performed the move graduates, the contents of the completion buffer register is transferred to a register file register specified by the third operand.
Abstract:
The present invention is directed to an apparatus and method for IP mobility management for persistent connections. Without affecting the applications on the network domain, it provides for domain hand-off for a mobile node so that the mobile node can maintain the persistent connection. The mobility management apparatus may comprise a Mobility-Aware Socket module (MAS) and one or more mobility management servers. Each mobility management server communicates with a corresponding mobile node. When a mobile node roams from a first network domain to a second network domain, the mobile node and its target mobile nodes execute the MAS module to support the mobility management for persistent connections through their corresponding mobility management servers.
Abstract:
Disclosed is a load balancing apparatus and method in wireless network hotspots, which comprises a resource allocation module and a load balancer. The resources reallocation module establishes the resources module and the relationship between access points (APs) and STAs in the wireless network hotspots, and seeks possible load balance shift paths (LBSPs). From these possible LBSPs, an LBSP is selected. Based on the selected LBSP, the load balancer reallocates network resources and dynamically arranges the load among the APs in the wireless network hotspots. This invention can be applicable to a centralized or a decentralized wireless communication system.
Abstract:
Methods, systems, and computer programs encoded on a computer storage medium include receiving, from an advertiser, advertisement criteria associated with an advertisement, the advertisement criteria comprising a first set of criteria and a budget and/or a bid, the advertisement criteria to be used in advertisement auctions for which the advertisement is to be considered for display to users performing online actions; determining a number of users for whom the advertisement was a candidate to be shown based on the first set of criteria associated with the advertisement, but to whom the advertisement was not shown based on the budget and/or bid of the advertisement during a particular period of time; and providing, in a report, information relating to the number of users.