Abstract:
Provided is an amplifier circuit having a constant output swing range and a stable delay time, where the amplifier circuit includes a first bias unit, a second bias unit, a comparison unit, and an amplifier unit, and the first bias unit responds to an internal reference signal with a predetermined voltage level and maintains constant the amount of a first current, and the second bias unit receives an external reference signal, responds to a control voltage, and controls the amount of a second current to be the same as the amount of the first current, and the comparison unit compares a voltage level of a first node with a voltage level of a second node, and controls a voltage level of the control voltage according to the comparison result, and the amplifier unit compares a voltage level of an external input signal with a voltage level of the external reference signal, amplifies and outputs a voltage difference between the two compared signals, responds to the control voltage, and controls the amount of a third current to be the same as the amount of the first current although the level of the external reference signal is varied, such that the amplifier circuit and a circuit for receiving data can maintain a constant output swing range and a stable delay time irrespective of variations in the voltage levels of the external input signal or the external reference signal.
Abstract:
Disclosed is a synchronous mirror delay circuit for generating an internal clock signal synchronized with an external clock signal, comprising: a clock buffer circuit that generates a reference clock signal in response to the external clock signal; a delay monitor circuit that delays the reference clock signal; a forward delay array for delaying an output clock signal of the delay monitor circuit to generate delay clock signals; a mirror control circuit that receives the delay clock signals and the reference clock signal to detect one delay clock signal synchronized with the reference clock signal among the delay clock signals; a backward delay array that delays the delay clock signal detected by the mirror control circuit to output a synchronous clock signal; a delay circuit that delays an asynchronous clock signal output through the forward delay array; and a clock driving circuit that outputs the delayed asynchronous clock signal as the internal clock signal when the reference clock signal is not synchronized with one of the delay clock signals.
Abstract:
A method and circuit for sampling and writing data in a double data rate (DDR) memory device, capable of securing sufficient setup and hold margins regardless of the operation frequency. Transferring first and second sampled input data to a first path using a first path control signal. Transferring third and fourth sampled input data to a second path using a second path control signal. The first and second path control signals are one half-cycle out of phase. First to fourth data are successively sampled in synchronization with a rising or falling edge of a first external clock signal; The sampled first data is linked onto a first path and the sampled second data is linked onto a second path in response to the first path control signal (generated in synchronization with a falling edge of the external clock signal); the first data on the first path and the second data on the second path are written to the memory cells in response to a write clock signal.
Abstract:
An internal clock generating circuit of a semiconductor device includes: a delay chain having a plurality of delay units for generating multi-phase clocks by adjusting an input clock; a thermometer for outputting a thermometer code value in response to an input selection data; a multiplexer for selectively outputting one of a plurality of clocks input from the delay chain in response to the thermometer code value of the thermometer; and a pulse regenerator for outputting an adjusted internal clock by restoring a pulse form of the clock output from the multiplexer into its original state and controlling the delay thereof as much as desired.
Abstract:
A semiconductor device connected to a bus consisting of a plurality of signal lines, comprises a first pad connected with a discrete resistor corresponding to the impedance of the signal lines, a plurality of second pads respectively connected with the signal lines, a reference voltage generator for generating a reference voltage, a comparator for comparing the voltage on the first pad with the reference voltage to generate a control signal, a code generator for generating a code signal according to the control signal, a current source for supplying the first pad with variable current according to the code signal, and a data driver for driving data signals to the signal lines connected with the second pads according to the code signal. The code signal is used to match the impedance of the data driver with the impedance of the signal lines.