Abstract:
Disclosed are examples of lighting devices and other devices that are equipped with a cellular transceiver that is configured to communicate using cellular radio frequency spectrum in both a small-scale cellular network and a large-scale cellular communication network. By utilizing a short-range, low-power cellular transceiver setting, a lighting device facilitates communication, within the space in which the lighting device is installed, of messages between the lighting device and other types of user devices. Such an equipped lighting device may be configured to participate in the generation and delivery of different types of messages, such as data, emergency broadcast information, news and other information. Such a lighting device also may be configured to extend the reach of devices within the space in which the equipped lighting devices are located.
Abstract:
A support structure provides two or more axes of intelligent locomotion for a movable object on the support structure. The support structure can include a track system made up of a plurality of identically configured track modules that are connected end-to-end. Each track module can include an elongated body defining a longitudinal axis and having two ends. Each end can include at least one beveled edge and at least one track surface extending longitudinally along the elongated body. The track surface can include a plurality of protuberances arranged in rows that are parallel to the longitudinal axis of the elongated body, and in columns that are perpendicular to the longitudinal axis of the elongated body. The track modules can be connected a power source and include electrical contacts that provide electricity to self-propelled units that travel along the track system.
Abstract:
A collection of defining features of an object uniquely identify the object. The defining features individually and the collection as a whole are humanly imperceptible. Various uniquely identifiable objects are mapped within a space based on corresponding collections of defining objects and known locations. Location information for the uniquely identifiable object is obtained by a mobile device after identifying the object based on the collection of defining features. Location of the mobile device is estimated based on obtained location information of one or more uniquely identifiable objects.
Abstract:
Networked intelligent lighting devices may utilize visual light communication to perform autonomous neighbor discovery, for example, as part of a map generation process. Individually, each intelligent lighting device within an installation transmits a series of packets via visual light communication for receipt by one or more of the other intelligent lighting devices. Receiving intelligent lighting devices record the number of received packets from each transmitter. Records of numbers of received packets are conveyed via a data communication network to a centralized process. The centralized process utilizes the conveyed records to determine neighbor relationships between lighting devices, for example to generate a map of devices as located within the installation.
Abstract:
A multi-stage driver system includes a switched mode power circuit for providing a direct current (DC) power signal to an electrical load and a control block. Control block includes interfaces coupled to receive at least one real-time input signal from a high voltage region or a low voltage region of the switched mode power circuit and to provide at least one control signal to the high voltage region or the low voltage region. Control block configures the switched mode power circuit to provide the DC power signal having at least one power parameter within a tolerance of a power configuration setting value of the electrical load. Control block responds to the at least one real-time input signal from the high voltage region or the low voltage region to adjust operation of the high voltage region or the low voltage region via the at least one control signal.
Abstract:
System and method examples offer ways to count occupants in an area by sound. A system includes a data network, a light fixture having intelligent driver circuitry coupled to a light source, a lighting control device to control a light output and operations of the light source in an area, and a microphone coupled to the lighting control device. The lighting control device includes programming that configures a processor to control the microphone to sample and detect sound in the area, determine a location of the detected sound relative to a position of the microphone coupled to the lighting control device, and increment an occupant counter to correspond to each newly determined location of sound in the area for a predetermined period of time.
Abstract:
A system includes a depth sensing device that includes a depth sensor. The depth sensor includes an infrared projector and an infrared camera. The system includes a processor coupled to the depth sensor and a memory accessible to the processor, and programming in the memory. Execution of the programming by the processor configures the system to perform functions, including functions to project, via the infrared projector, a pattern of infrared light on a plurality of objects located in a space that are reached by the projected infrared light. The plurality of objects includes objects of interest and light fixtures in the space. The execution of the programming by the processor further configures the system to determine light fixture location coordinates for each of the light fixtures based on computed distances between the objects of interest and each of the light fixtures based on distortions of the projected infrared light.
Abstract:
Lighting system and method examples offer an immersive lighting environment. A multimedia interface of a receiver obtains multimedia content that includes video data, audio data and embedded lighting information. A receiver includes a processor to generate lighting commands for each of a number of luminaires based on the embedded lighting information from the multimedia content. A network interface of the receiver sends respective lighting commands to each of the luminaires, so that operations of controllable light sources of the luminaires are based on the received respective lighting commands (based on the embedded lighting information). This approach, for example, enables coordination of lighting in a venue with the output of the associated video and/or audio multimedia content. The lighting information may be scripted as part of multimedia content creation and/or created or adapted by crowd sourcing or machine learning of customer preferences.
Abstract:
A self-propelled unit for movable operation on a support structure along a first axis of movement and a second axis of movement that is transverse to the first axis of movement includes a carrier configured for movable displacement on the support structure. A first conveyor assembly is operable to move the carrier on the support structure along the first axis of movement. A second conveyor assembly is operable to move the carrier on the support structure along the second axis of movement. A light source can be attached to the carrier in an operable mode to provide illumination to an area in proximity to the carrier. At least one power contact is configured to maintain electrical contact between the carrier and the support structure.
Abstract:
Networked intelligent lighting devices may utilize visual light communication to perform autonomous neighbor discovery, for example, as part of a map generation process. Individually, each intelligent lighting device within an installation transmits a series of packets via visual light communication for receipt by one or more of the other intelligent lighting devices. Receiving intelligent lighting devices record the number of received packets from each transmitter. Records of numbers of received packets are conveyed via a data communication network to a centralized process. The centralized process utilizes the conveyed records to determine neighbor relationships between lighting devices, for example to generate a map of devices as located within the installation.