Abstract:
A display may be provided with integral touch functionality. The display may include a common electrode layer having row electrodes arranged in rows and column electrodes interposed between the row electrodes of each row. The row electrodes may be electrically coupled by conductive paths. The row and column electrodes may be coupled to touch sensor circuitry that uses the row and column electrodes to detect touch events. Each electrode of the common electrode layer may cover a respective portion of an array of pixels. Each pixel of the display may have a respective aperture. The conductive paths that electrically couple row electrodes of the common electrode layer may cover or otherwise block some light from passing through pixels, resulting in reduced apertures. Dummy structures may be provided for other pixels that modify the apertures of the other pixels to match the reduced apertures associated with the conductive paths.
Abstract:
A transistor that may be used in electronic displays to selectively activate one or more pixels. The transistor includes a metal layer, a silicon layer deposited on at least a portion of the metal layer, the silicon layer includes an extension portion that extends a distance past the metal layer, and at least three lightly doped regions positioned in the silicon layer. The at least three lightly doped regions have a lower concentration of doping atoms than other portions of the silicon layer forming the transistor.
Abstract:
A TFT stack for a liquid crystal display is provided. The TFT stack includes a silicon layer that includes a heavily doped region, a non-doped region, and a lightly doped region between the heavily doped region and the non-doped region. The heavily doped region is hydrogenated. The TFT stack also includes an insulation layer that includes a first portion formed over the lightly doped region and a second portion disposed over the non-doped region and a gate metal electrode layer formed over the second portion of the non-doped region. The TFT stack also includes a first dielectric layer disposed over the gate metal electrode and over the first portion of the insulation layer. The heavily doped region is hydrogenated to reduce the dependence of the capacitance between the gate metal electrode and the conductive layer Cgd upon a bias voltage being applied between the gate metal electrode and the conductive layer.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
Abstract:
Increasing resolution of liquid crystal displays may result in small distances between adjacent liquid crystal display pixels. This tight pixel spacing may reduce transmission through the liquid crystal display pixels and may result in cross-talk between the liquid crystal display pixels. To increase transmission and, correspondingly, display efficiency, a reflective layer may be included in the liquid crystal display. The reflective layer recycles backlight that may otherwise be absorbed, improving transmittance and efficiency. To reduce color shift and color mixing caused by cross-talk, the pixels may have their pixel electrodes arranged in a zigzag layout. Each pixel electrode may have a height that is less than or equal to the total height of the pixel divided by two. The pixel electrodes in a given row are also alternatingly coupled to first and second gate lines. This zigzag layout results in an increased distance between adjacent pixel electrodes, mitigating pixel cross-talk.
Abstract:
A touch screen is disclosed that includes conductive elements in a display area and connecting traces for routing the conductive elements to other locations. The connecting traces can be routed underneath or over existing opaque structures in the display area, instead of in border areas adjacent to the display area, to minimize the effect of the connecting traces on the display aperture ratio. The lengths and/or widths of these connecting traces as well as the number of parallel connecting traces used to connect to a particular element can be selected to balance the load on the drive and/or sense circuitry and on display pixels caused by the connecting traces.
Abstract:
A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
Abstract:
A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
Abstract:
An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.
Abstract:
A touch screen display may include gate line driver circuitry coupled to a display pixel array. The display may be provided with intra-frame pausing (IFP) capabilities, where touch or other operations may be performed during one or more intra-frame blanking intervals. In one suitable arrangement, a gate driver may be operable in a high impedance mode, where the output of the gate driver is left floating during touch or IFP intervals. In another suitable arrangement, the gate driver may be operable in an IFP reduced stress mode, where a digital pass gate in the gate driver is deactivated during IFP intervals. In yet another suitable arrangement, the gate driver may be operable in an all-gate-high (AGH) power-down mode, where the output of each gate driver in the driver circuitry is driven high in parallel when the displayed is being powered off. These arrangements may be implemented in any suitable combination.