Abstract:
Aspects of the subject technology relate to display circuitry including pixel overdrive circuitry. The pixel overdrive circuitry includes one more lookup tables of boost values to be applied to pixel display values of a frame to be displayed, for overdrive of that frame. Each lookup table includes a lightness-blur-edge-width-based boost value. The lightness-blur-edge-width-based boost value matches a lightness-blur-edge-width of an intermediate grey-to-grey transition to a lightness-blur-edge-width of a maximum grey-to-grey transition.
Abstract:
A display may include an optical film to promote sunglass-friendly viewing of the display. Displays may include linear polarizers. For example, a liquid crystal display may have a linear polarizer above a liquid crystal layer, whereas an organic light-emitting diode display may have a linear polarizer that forms a portion of a circular polarizer to reduce reflections in the display. Displays that emit linearly polarized light may not be compatible with polarized sunglasses. To ensure an optimal user experience for users wearing sunglasses, displays may include sunglass-friendly optical films. A sunglass-friendly optical film may be a film formed from a birefringent material such as a polymer or liquid crystal. The sunglass-friendly optical film may have an optical axis that is at a 45° angle relative to the optical axis of the underlying linear polarizer. The sunglass-friendly optical film may be patterned to have reduced thickness regions.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A liquid crystal layer may be interposed between the color filter layer and the thin-film transistor layer. Column spacer structures may be used to maintain a desired gap for the liquid crystal layer between the color filter layer and the thin-film transistor layer. The column spacer structures may include column spacers having bases and opposing tips. The tips may penetrate into the liquid crystal layer and may bear against the thin-film transistor layer or aligned column spacer pads on the thin-film transistor layer. The color filter layer may have a glass substrate, a black matrix on the substrate, a color filter element layer on the black matrix, and an overcoat on the color filter element layer. Some or all of the column spacers may have bases that contact the black matrix layer.
Abstract:
An electronic device may have a liquid crystal display having a backlight and color mixing prevention structures. The color mixing prevention structures may, in part, be formed from one or more arrays of color filter elements. The liquid crystal display may include first and second transparent substrate layers on opposing sides of a liquid crystal layer. The display may include a first array of color filter elements on the first transparent substrate layer and a second array of color filter elements on the second transparent substrate layer. One or more of the arrays of color filter elements may include a black matrix formed over portions of the color filter elements. The color filter elements may fill or partially fill openings in the black matrix. The display may include a collimating layer on the second transparent substrate layer. The color filter elements may include cholesteric color filter elements.
Abstract:
An active matrix liquid crystal display having an array of pixels is provided. The display includes a thin film transistor (TFT) for each pixel. The TFT has a gate electrode, a source electrode overlapping with a first area of the gate electrode, and a drain electrode overlapping with a second area with the gate electrode. The display also includes a color filter layer disposed over the TFT. The color filter layer has a first via hole to expose a portion of the drain electrode. The display further includes a metal layer disposed over the color filter layer and covering the gate electrode. The metal layer is configured to connect to the drain electrode through the first via hole. The display also includes an organic insulator layer disposed over the metal layer. The organic insulator layer has a second via hole to expose a first portion of the metal layer and a third via hole to expose a second portion of the metal layer.
Abstract:
A display is provided that has upper and lower polarizers, a color filter layer, a liquid crystal layer, and a thin-film transistor layer. The color filter layer and thin-film transistor layer may be formed from materials such as glass that are subject to stress-induced birefringence. To reduce light leakage that reduces display performance, one or more birefringence compensation layers may be incorporated into the display to help compensate for any birefringence effects. The compensation layers may include a birefringence compensation layer attached to the color filter layer or the thin-film transistor layer. A display may include an upper compensation layer attached to the color filter layer and a lower compensation layer attached to the thin-film transistor layer. The compensation layer may be formed from glass or polymer materials that have a negative photo-elastic constant.
Abstract:
A display is provided that has upper and lower polarizers, a color filter layer, a liquid crystal layer, and a thin-film transistor layer. The color filter layer and thin-film transistor layer may be formed from materials such as glass that are subject to stress-induced birefringence. To reduce light leakage that reduces display performance, one or more birefringence compensation layers may be incorporated into the display to help compensate for any birefringence effects. The compensation layers may include a birefringence compensation layer attached to the color filter layer or the thin-film transistor layer. A display may include an upper compensation layer attached to the color filter layer and a lower compensation layer attached to the thin-film transistor layer. The compensation layer may be formed from glass or polymer materials that have a negative photo-elastic constant.
Abstract:
An active matrix liquid crystal display having an array of pixels is provided. The display includes a thin film transistor (TFT) for each pixel. The TFT has a gate electrode, a source electrode overlapping with a first area of the gate electrode, and a drain electrode overlapping with a second area with the gate electrode. The display also includes a color filter layer disposed over the TFT. The color filter layer has a first via hole to expose a portion of the drain electrode. The display further includes a metal layer disposed over the color filter layer and covering the gate electrode. The metal layer is configured to connect to the drain electrode through the first via hole. The display also includes an organic insulator layer disposed over the metal layer. The organic insulator layer has a second via hole to expose a first portion of the metal layer and a third via hole to expose a second portion of the metal layer.
Abstract:
An electronic device may have a hinge that allows the device to be flexed about a bend axis. A display may span the bend axis. To facilitate bending about the bend axis without damage, the display may include a display cover layer with a flexible portion. The flexible portion of the display cover layer may be interposed between first and second rigid portions of the display cover layer. The display cover layer may also include a layer with self-healing properties. The layer of self-healing material may be formed across the entire display cover layer or may be formed only in the flexible region of the display cover layer. The display cover layer may include a layer of elastomer in the flexible region of the display cover layer for increased flexibility. Self-healing may be initiated or expedited by externally applied heat, light, electric current, or other type of external stimulus.
Abstract:
An electronic device may include a display system and an optical system that are supported by a housing. The optical system may be a catadioptric optical system having first, second, and third lens elements. The first lens element may have a convex surface and a concave surface. The convex surface may have less curvature than the concave surface. An anti-reflective coating may be formed on the convex surface. A partially reflective mirror may be interposed between the first and second lens elements and a reflective polarizer may be interposed between the second and third lens elements. Alternatively, a partially reflective mirror may be interposed between the second and third lens elements and a reflective polarizer may be interposed between the first and second lens elements.