Abstract:
Processes are described for making biobased isoprene, wherein a biobased isobutene prepared from acetic acid in the presence of a catalyst is combined with a formaldehyde source to form a reaction mixture, and the reaction mixture is reacted to yield biobased isoprene. In certain embodiments, methyl-tert-butyl ether prepared by reacting the same biobased isobutene with methanol serves as a formaldehyde source, being oxidatively cracked to produce formaldehyde as well as isobutene for being converted to the biobased isoprene.
Abstract:
A process is disclosed for converting acetic acid to propylene and isobutene as the principal hydrocarbon products made, in the presence of a catalyst and in the further presence of hydrogen. In certain embodiments, a ZnxZryOz mixed oxide catalyst is used for carrying out a gas phase process, and propylene is produced preferentially to isobutene by using at least a certain amount of hydrogen in the process. In some embodiments, a ZnxZryOz mixed oxide catalyst made by an incipient wetness impregnation method is used and is indicated to be very stable for carrying out the conversion.
Abstract translation:公开了一种将乙酸转化为丙烯和异丁烯作为主要烃产物的方法,在催化剂存在下和在氢的存在下制备。 在某些实施方案中,使用Zn x Zn y O z混合氧化物催化剂进行气相方法,并且通过在该方法中使用至少一定量的氢气优先产生丙烯。 在一些实施方案中,使用通过初始润湿浸渍法制备的Zn x ZrO x z混合氧化物催化剂,并且表明对于进行转化是非常稳定的。
Abstract:
Copper-containing, multimetallic catalysts with either a zirconia or carbon support are described which have improved utility for the hydrogenolysis of a glycerol or glycerol-containing feedstock to provide a biobased 1,2-propanediol product. specially, improved carbon-supported examples of such catalysts are described for this reaction as well as for other processes wherein hydrogen is used, with methods for maintaining the activity of these catalysts. Related treatment methods in the preparation of these improved catalysts enable the use of carbons with a desired mechanical strength but which previously lacked activity, for example, for the conversion of a glycerol or glycerol-containing feed to produce 1,2-propanediol, so that copper-containing, multi-metallic catalysts may be employed for making a biobased propylene glycol using carbon supports that previously would have not been suitable.
Abstract:
Disclosed herein are methods for synthesizing 1,2,5,6-hexanetetrol (HTO), 1,6 hexanediol (HDO) and other reduced polyols from C5 and C6 sugar alcohols or R glycosides. The methods include contacting the sugar alcohol or R-glycoside with a copper catalyst, most desirably a Raney copper catalyst with hydrogen for a time, temperature and pressure sufficient to form reduced polyols having 2 to 3 fewer hydoxy groups than the starting material. When the starting compound is a C6 sugar alcohol such as sorbitol or R-glycoside of a C6 sugar such as methyl glucoside, the predominant product is HTO. The same catalyst can be used to further reduce the HTO to HDO.
Abstract:
A process is described for producing 1,3-butanediol, wherein an ester of poly-(R)-3-hydroxybutyrate such as formed by transesterification with an alcohol is reduced by hydrogenation in the presence of a skeletal copper-based catalyst to provide 1,3-butanediol. The 1,3-butanediol may be transesterified by reaction with additional poly-(R)-3-hydroxybutyrate ester to produce (R)-3-hydroxybutyl (R)-3-hydroxybutyrate.
Abstract:
Disclosed herein are methods for synthesizing 1,2,5,6-hexanetetrol (HTO), 1,6 hexanediol (HDO) and other reduced polyols from C5 and C6 sugar alcohols or R glycosides. The methods include contacting the sugar alcohol or R-glycoside with a copper catalyst, most desirably a Raney copper catalyst with hydrogen for a time, temperature and pressure sufficient to form reduced polyols having 2 to 3 fewer hydoxy groups than the starting material. When the starting compound is a C6 sugar alcohol such as sorbitol or R-glycoside of a C6 sugar such as methyl glucoside, the predominant product is HTO. The same catalyst can be used to further reduce the HTO to HDO.
Abstract:
Disclosed herein are methods of synthesizing shorter chain polyols. Methods of hydrolyzing polysaccharides are further disclosed. The present invention is also directed towards methods of selectively synthesizing sorbitol.
Abstract:
A hydrogenation catalyst comprising nickel, rhenium, and cadmium is disclosed. Process of using hydrogenation catalyst for producing propylene glycol from polyol feedstock are also disclosed. The present invention relates generally to catalysts and more particularly, to catalysts having an enhanced ability to produce propylene glycol from sugar alcohols while reducing the production of by-products.
Abstract:
Various processes for preparing C4 aldoses and/or ketones thereof are described. Various processes are described for preparing C4 aldoses and/or ketones thereof from feed compositions comprising glycolaldehyde. Also, various processes for preparing useful downstream products and intermediates, such as erythritol and erythronic acid, from the C4 aldoses and/or ketones thereof are described.
Abstract:
Various processes for the pyrolysis of carbohydrates to prepare products such as glycolaldehyde are described. Also, various catalysts and processes for preparing catalysts useful for carbohydrate pyrolysis are described.