Abstract:
A memory device includes an array of memory cells arranged as a plurality of rows and columns, each row being coupled to an associated read word line, and each column forming at least one column group, where the memory cells of each column group are coupled to an associated read bit line. Each column has an active mode of operation where a read operation may be performed on an activated memory cell within that column group, and a non-active mode of operation where the read operation is not performable. Precharge circuitry is used, for each column group, to precharge the associated read bit line to a first voltage level prior to the read operation. Each memory cell includes coupling circuitry connected between the associated read bit line and a reference line associated with the column group containing that memory cell.
Abstract:
An integrated level shifting combinatorial circuit receives a plurality of input signals in a first voltage domain and performs a combinatorial operation to generate an output signal in a second voltage domain. The circuit includes combinatorial circuitry includes first and second combinatorial circuit portions operating in respective first and second voltage domains. The second combinatorial circuit portion has an output node whose voltage level identifies a value of the output signal and includes feedback circuitry which applies a level shifting function to an intermediate signal generated by the first combinatorial circuit portion. A contention mitigation circuitry reduces a voltage drop across at least one component within the feedback circuitry in situations when the combinatorial circuitry's performance of the combinatorial operation causes the combinatorial circuitry to switch the voltage on the output node, the contention mitigation circuitry thereby assists the combinatorial circuitry in the output node voltage switching.
Abstract:
Various implementations described herein are directed to a method. The method may provide a tile database with multiple tiles that define one or more first component sections for a memory device. The method may define an array of storage elements having a specified memory array width. The method may define one or more second component sections having at least part of a standard cell based tile with standard cells arranged in multiple standard cell rows. The method may generate a memory instance by defining a layout for the memory device with the multiple tiles selected from the tile database based on matching the multiple standard cell rows to the specified memory array width of the array of storage elements.
Abstract:
A computer implemented system and method is provided for generating a layout of the cell defining a circuit component, the layout providing a layout pattern for a target process technology. The method comprises obtaining an archetype layout providing a valid layout pattern for the cell having regard to design rules of the target process technology, and receiving an input data file providing a process technology independent schematic of the circuit component for which the cell is to be generated. A schematic sizing operation is then performed on the input data file, having regard to both schematic constraints applicable to the target process technology and layout constraints derived from the archetype layout, in order to generate an output data file providing a process technology dependent schematic of the circuit component. A cell generation operation is then performed using the output data file and layout data determined from the archetype layout in order to generate the layout of the cell. Such an approach enables both the schematic and layout to be co-optimised during generation of the layout of the cell.
Abstract:
Various implementations described herein are directed to an integrated circuit having clock generation circuitry that receives an input clock signal and provides a first clock signal having a first pulse width. The integrated circuit includes first pulse-stretching circuitry coupled between the clock generation circuitry and input latch control circuitry. The first pulse-stretching circuitry receives the first clock signal and provides a second clock signal to the input latch control circuitry based on an enable signal. The second clock signal has a second pulse width that is at least greater than the first pulse width. The integrated circuit may include second pulse-stretching circuitry coupled between the clock generation circuitry and read-write circuitry. The second pulse-stretching circuitry provides a third clock signal to the read-write circuitry based on the enable signal. The third clock signal has a third pulse width that is at least greater than the first pulse width.
Abstract:
A memory device and a method of operating the memory device are provided. The memory device comprises a plurality of storage units and access control circuitry. The access control is configured to receive an access request and in response to the access request to initiate an access procedure in each of the plurality of storage units. The access control circuitry is configured to receive an access kill signal after the access procedure has been initiated and, in response to the access kill signal, to initiate an access suppression to suppress the access procedure in at least one of the plurality of storage units. Hence, by initiating the access procedures in all storage units in response to the access request, e.g. without waiting for a further indication of a specific storage unit in which to carry out the access procedure, the overall access time for the memory device kept low, but by enabling at least one of the access procedures later to be suppressed in response to the access kill signal dynamic power consumption of the memory device can be reduced.
Abstract:
Various implementations described herein are directed to an integrated circuit for implementing low power input gating. In one implementation, the integrated circuit may include a chip enable device configured to receive and use a clock input signal to toggle a control input of memory based on a chip enable signal. The integrated circuit may include a latch device configured to latch the control input of the memory. The integrated circuit may include a latch enable device coupled between the chip enable device and the latch device. The latch enable device may be configured to receive the clock input signal from the chip enable device and use the clock input signal to gate the latch device based on a latch enable signal so as to selectively cutoff toggling of the clock input signal to the control input of the memory.
Abstract:
A memory device and a method of operating the memory device are provided. The memory device comprises a plurality of storage units and access control circuitry. The access control is configured to receive an access request and in response to the access request to initiate an access procedure in each of the plurality of storage units. The access control circuitry is configured to receive an access kill signal after the access procedure has been initiated and, in response to the access kill signal, to initiate an access suppression to suppress the access procedure in at least one of the plurality of storage units. Hence, by initiating the access procedures in all storage units in response to the access request, e.g. without waiting for a further indication of a specific storage unit in which to carry out the access procedure, the overall access time for the memory device kept low, but by enabling at least one of the access procedures later to be suppressed in response to the access kill signal dynamic power consumption of the memory device can be reduced.
Abstract:
An integrated level shifting latch circuit receives an input signal in a first voltage domain and generates an output signal in a second voltage domain. Data retention circuitry operates in a transparent phase where a data value is subjected to a level shifting function and is written into the data retention circuitry dependent on the input signal. Control circuitry controls the data retention circuitry to operate in the transparent phase during a first phase of the clock signal and to operate in the latching phase during a second phase of the clock signal. Writing circuitry writes the data value into the data retention circuitry. Contention mitigation circuitry, during the transparent phase, reduces a voltage drop across at least one component within the data retention circuitry.
Abstract:
A memory device comprises an array of bitcells arranged as a plurality of rows of bitcells and a plurality of columns of bitcells, and has a plurality of wordlines and a plurality of readout channels. A control unit is configured to control access to the array of bitcells, wherein in response to a memory access request specifying a memory address the control unit is configured to activate a selected wordline and to activate the plurality of readout channels, and to access a row of bitcells in said array storing a data word and addressed by the memory address. The data word consists of a number of data bits given by a number of bitcells in each row of bitcells. The control unit is further configured to be responsive to a masking signal and, when the masking signal is asserted when said memory access request is received, the control unit is configured to activate only a portion of the selected wordline and a portion of the plurality of readout channels, such that only a portion of the data word is accessed.