Abstract:
A power amplifier device for a magnetic resonance machine includes a housing, in which a first printed circuit board including at least one amplifier module having at least one power electronics component and at least one conductor pattern connected to the power electronics component is arranged. A second printed circuit board including at least one power electronics component and a conductor pattern is also arranged in the housing. The conductor pattern of the second printed circuit board is connected to at least one connection point of the first printed circuit board in order to supply voltage to the amplifier module. At least one cooling duct for cooling the power electronics components is arranged in the housing. At least two of the power electronics components are arranged such that the electronics components are thermally connected to a common cooling duct on opposite sides of the cooling duct.
Abstract:
A signal splitter for creating at least two symmetrical equal-power signals from an input signal for use in an amplifier device includes at least one input terminal pair and at least two output terminal pairs. A primary conductor structure supplied from the at least one input terminal pair is provided for induction of a current flow in at least two secondary conductor structures each connected to an output terminal pair of the at least two output terminal pairs and the at least two secondary conductor structures. A center of a conductor length of each of the at least two secondary conductor structures is connected to ground, and the primary conductor structure and the at least two secondary conductor structures are realized as conductor tracks applied to a printed circuit board.
Abstract:
A radio-frequency power amplifier is supplied by a voltage supply device. The voltage supply device has a voltage divider chain that is connected at the input side with a base potential and a ground voltage. The voltage divider chain has a number of Zener diodes connected in series, with which at least one capacitor is connected in parallel. Intermediate voltages that lie between the ground voltage and the base potential can be tapped at respective node points between each two immediately adjacent Zener diodes. A first supply input of the radio-frequency power amplifier is connected with the ground voltage. The voltage divider chain is connected with the radio-frequency power amplifier via a switching device. The switching device has a number of switching elements connected in parallel with one another, these switching elements being connected at the output side with a second supply input of the radio-frequency power amplifier. The base potential or one of the intermediate voltages is present at the input side of each switching element. The switching elements can be individually controlled by a control device, such that the second supply input can be selectively connected with the base potential and each of the intermediate voltages via the switching device.
Abstract:
A method for supplying a plurality of system components of a system with a common reference signal is described, in which an electrical output reference signal is created by a reference signal generator and a number of optical reference signals are generated using the electrical output reference signal. The optical reference signals are transmitted to the individual system components, and an electrical input reference signal for the corresponding system component is generated at or in the system component using the transferred optical reference signal. A corresponding reference signaling arrangement, a reference signal transmission facility, an electro-technical system having a number of system components and a system component for the system are also provided.
Abstract:
In a circuit and a method for amplification of an electrical input signal, a signal splitter divides the input signal into a first partial signal in a first signal path and a second partial signal in a second signal path. The first signal path has a first amplification stage for amplification of the first partial signal and the second signal path has a second amplification stage for amplification of the second partial signal. Each of the two amplification stages is supplied with current by a current supply device. Both amplified partial signals are recombined into an output signal by a signal combination element downstream from the amplification stages. The first amplification stage and the second amplification stage are coupled with a regulation device that regulates the amplification of the first partial signal dependent on a current difference between a supply current requirement of the second amplification stage and a supply current requirement of the first amplification stage and which regulates the amplification of the second partial signal dependent on a current difference between the supply current requirement of the first amplification stage and the supply current requirement of the second amplification stage.
Abstract:
A power electronic unit for an amplifier of an imaging magnetic resonance tomography (MRT) system is provided. The power electronic unit includes at least one printed circuit board, on which a plurality of transistors are arranged. Ports (e.g., drain and source) of the plurality of transistors are connected together by electrically conductive connections, and the plurality of transistors are all arranged on one side of the at least one printed circuit board. An output line or cable parallel to the connections, at least in sections, runs on the opposing side of the printed circuit board and may be connected or is connected with or without further interconnected elements (e.g., a balun) to transmitting coils of the MRT.
Abstract:
An apparatus for cooling an electrical component includes a circuit board with the electrical component disposed on the circuit board. The apparatus includes a cover disposed on the circuit board. The cover and the circuit board form a closed cavity in which the electronic component is disposed. The cavity has a first opening for introduction of a fluid and a second opening for discharge of a fluid.
Abstract:
A device for power measurement for the purposes of plausibility checking and/or calibration of a primary power measurement device on a power amplifier of a magnetic resonance device is provided. The device includes a circulator arranged between an output of the power amplifier and a switching device for connection of the power amplifier to a transmit antenna. A first input of the circulator is connected to the output of the power amplifier, a second input of the circulator is connected to the switching device, and a third input of the circulator is connected to a secondary power measurement device configured for measurement of a signal reflected on the open switching device or the transmit antenna.
Abstract:
A power amplifier device for a magnetic resonance device includes a circuit board with at least one power amplifier module, and at least one electronics structure including coupled conductor paths arranged on opposing sides of the circuit board. The power amplifier device also includes a cooling plate operable for cooling components on the circuit board that heat up during operation and abutting the circuit board on one side. The cooling plate has a depression that follows the course of the conductor path and faces the conductor path in the region of the conductor path of the electronics structure that is arranged on the side of the circuit board facing the cooling plate.
Abstract:
A power amplifier unit for a magnetic resonance device includes at least two power amplifier modules. Symmetrical output signals from the at least two power amplifier modules are fed to a shared balun. The shared balun is provided on a printed circuit board (PCB) and is realized in a unit with the at least two power amplifier modules. The balun is configured to asymmetrize a sum signal.