Abstract:
A semiconductor heterostructure based pressure switch comprising: first and second small bandgap material regions separated by a larger bandgap material region; a third small bandgap material region within the region of larger bandgap material, the third material region and larger bandgap material region defining at least one quantum dot; and, first and second electrodes electrically coupled to the first and second small bandgap material regions, respectively, wherein the electrodes are sufficiently proximate to said quantum dot to facilitate electron tunneling there between when a pressure is applied to the bandgap material defining the quantum dot.
Abstract:
An ultra high temperature hermetically protected transducer includes a sensor chip having an active area upon which is deposited piezoresistive sensing elements. The elements are located on the top surface of the silicon wafer chip and have leads and terminals extending from the active area of the chip. The active area is surrounded with an extending rim or frame. The active area is coated with an oxide layer which passivates the piezoresistive sensing network. The chip is then attached to a glass pedestal, which is larger in size than the sensor chip. The glass pedestal has a through hole or aperture at each corner. The entire composite structure is then mounted onto a high temperature header with the metallized regions of the header being exposed to the holes in the glass pedestal; a high temperature lead is then bonded directly to the metallized contact area of the sensor chip at one end. The leads are of sufficient length to extend into the through holes in the glass pedestal. A sealing cover is then attached to the entire composite sensor to hermetically seal all of the interconnections. The sealing cover is a glass structure, has a central aperture which corresponds to the aperture formed by the frame, allowing the active area of the sensor to be exposed to the pressure medium. The sealing cover is bonded to the periphery of the rim and to the glass supporting pedestal.
Abstract:
There is disclosed a nanotube sensor which essentially employs a straight or twisted nanotube deposited on a supporting surface, such as silicon, silicon dioxide and some other semiconductor or metal material. The nanotube is basically a graphite device which is now subjected to stress causing the electrical characteristics of the nanotube to change according to stress. The nanotube is then provided in a circuit, such as a Wheatstone Bridge or other circuit, and the circuit will produce an output signal proportional to the change in electrical characteristics of the nanotube according to the applied force.
Abstract:
A differential pressure sensor has a semiconductor wafer having a top and bottom surface. The top surface of the wafer has a central active area containing piezoresistive elements. These elements are passivated and covered with a layer of silicon dioxide. Each element has a contact terminal associated therewith. The semiconductor wafer has an outer peripheral silicon frame surrounding the active area. The semiconductor wafer is bonded to a glass cover member via an anodic or electrostatic bond by bonding the outer peripheral frame to the periphery of the glass wafer. An inner silicon dioxide frame forms a compression bond with the glass wafer when the glass wafer is bonded to the silicon frame. This compression bond prevents deleterious fluids from entering the active area or destroying the silicon. The above described apparatus is mounted on a header such that through holes in the glass wafer are aligned with the header terminals. The header has pins which are directed from the header terminals to enable contact to be made to the unit. Both the top and bottom surfaces of the semiconductor wafer are coated with silicon dioxide which acts to protect all the elements from deleterious substances. Thus a first pressure is applied to one surface and a second pressure is applied to the other surface to enable differential operation.
Abstract:
A personal identification system employs a matrix of pressure sensors mounted to a plate having a template of a human hand. When a person's hand is placed on the plate and overlying the template a pressure profile of the person's hand is provided. This profile is compared with a stored pressure profile of the same person's hand. If the pressure points or profiles correlate a positive identification of the person is made.
Abstract:
A semiconductor filter is provided to operate in conjunction with a differential pressure transducer. The filter receives a high and very low frequency static pressure attendant with a high frequency low dynamic pressure at one end, the filter operates to filter said high frequency dynamic pressure to provide only the static pressure at the other filter end. A differential transducer receives both dynamic and static pressure at one input port and receives said filtered static pressure at the other port where said transducer provides an output solely indicative of dynamic pressure. The filter in one embodiment has a series of etched channels directed from an input end to an output end. The channels are etched pores of extremely small diameter and operate to attenuate or filter the dynamic pressure. In another embodiment, a spiral tubular groove is found between a silicon wafer and a glass cover wafer, an input port of the groove receives both the static and dynamic pressure with an output port of the groove providing only static pressure. The groove filters attenuate dynamic pressure to enable the differential transducer to provide an output only indicative of dynamic pressure by cancellation of the static pressure.
Abstract:
Dynamic IR radiation power control, beam steering and focus adjustment for use in a nanoscale IR spectroscopy system based on an Atomic Force Microscope. During illumination with a beam from an IR source, an AFM probe tip interaction with a sample due to local IR sample absorption is monitored. The power of the illumination at the sample is dynamically decreased to minimize sample overheating in locations/wavelengths where absorption is high and increased in locations/wavelengths where absorption is low to maintain signal to noise. Beam alignment and focus optimization as a function of wavelength are automatically performed.
Abstract:
A system and method for automatic analysis of temperature transition data over an area of a sample surface. The system relies on the use of a microfabricated probe, which can be rapidly heated and cooled and has a sharp tip to provide high spatial resolution. The system also has fast x-y-z positioners, data collection, and algorithms that allow automatic analysis of and visualization of temperature transition data.
Abstract:
A pressure sensor header for a pressure transducer includes a header shell having a sensor cavity formed therein, a sensor element disposed in the sensor cavity, a fluid medium disposed in the sensor cavity, an isolation diaphragm closing the sensor cavity, and a joining arrangement disposed at an interface of the isolation diaphragm and the header shell, the joining arrangement joining the isolation diaphragm with the header shell. The isolation diaphragm is an integral unit comprising a thin membrane surrounded by a thicker outer ring. The joining arrangement has a recessed female joining element formed in one of the outer ring of the isolation diaphragm and the header shell, and a protruding male joining element formed on the other one of the outer ring of the isolation diaphragm and the header shell, the male joining element received in the female joining element.
Abstract:
A differential pressure sensor has a semiconductor wafer having a top and bottom surface. The top surface of the wafer has a central active area containing piezoresistive elements. These elements are passivated and covered with a layer of silicon dioxide. Each element has a contact terminal associated therewith. The semiconductor wafer has an outer peripheral silicon frame surrounding the active area. The semiconductor wafer is bonded to a glass cover member via an anodic or electrostatic bond by bonding the outer peripheral frame to the periphery of the glass wafer. An inner silicon dioxide frame forms a compression bond with the glass wafer when the glass wafer is bonded to the silicon frame. This compression bond prevents deleterious fluids from entering the active area or destroying the silicon. The above described apparatus is mounted on a header such that through holes in the glass wafer are aligned with the header terminals. The header has pins which are directed from the header terminals to enable contact to be made to the unit. Both the top and bottom surfaces of the semiconductor wafer are coated with silicon dioxide which acts to protect all the elements from deleterious substances. Thus a first pressure is applied to one surface and a second pressure is applied to the other surface to enable differential operation.