摘要:
A standalone router is integrated into a multi-chassis router. Integrating the standalone router into a multi-chassis router requires replacing switch cards in the standalone router with multi-chassis switch cards. The multi-chassis switch cards forward packets to a central switch card chassis for routing within the multi-chassis router. By incrementally replacing standalone switch cards with multi-chassis switch cards in the standalone router, packet forwarding performance is maintained during the integration.
摘要:
In general, techniques are described for efficiently and transparently partitioning a physical address space of a DRAM part lacking dedicated error protection circuitry to supply addressable error protection bytes for use in detecting and/or correcting bit errors elsewhere present in the physical address space. In one example, a network device includes a DRAM and a memory controller that receives a write command to write data to the DRAM. An address translation module of the memory controller logically partitions the DRAM to define a plurality of physically addressable sections that includes an error protection section for storing error protection bits and one or more data storage sections. The memory controller defines a contiguous logical address space representing the data storage sections. A DRAM controller of the network device communicates with the DRAM to store the data to one of the data storage sections in accordance with the contiguous logical address space.
摘要:
A data read/write system includes a system clock, a single port memory, a cache memory that is separate from the single port memory, and a controller coupled to an instruction pipeline. The controller receives, via the instruction pipeline, first data to write to an address of the single port memory, and further receives, via the instruction pipeline, a request to read second data from the single port memory. The controller stores the first data in the cache memory, and retrieves the second data from either the cache memory or the single port memory during one or more first clock cycles of the system clock. The controller copies the first data from the cache memory and stores the first data at the address in the single port memory during a second clock cycle of the system clock that is different than the one or more first clock cycles.
摘要:
Data units received by a network device may be classified into traffic flow classes in which the determined traffic flow class for a data unit may be dynamically refined as the data unit is processed by the network device. A dispatch component of the network device may receive data units associated with traffic flow classes. Parallel processing engines of the network device may receive the data units from the dispatch component and may generate, for a least one of the data units, a plurality of dynamically refined indications of the traffic flow class to which the data unit belongs. Additionally, an ordering component of the network device may include a plurality of re-order queues, where the at least one data unit successively progresses through at least two of the re-order queues in an order defined by the plurality of dynamically refined indications of the traffic flow class.
摘要:
Methods and systems consistent with the present invention provide a programmable table which allows software to define a plurality of branching functions, each of which maps a vector of condition codes to a branch offset. This technique allows for a flexible multi-way branching functionality, using a conditional branch outcome table that can be specified by a programmer. Any instruction can specify the evaluation of arbitrary conditional expressions to compute the values for the condition codes, and can choose a particular branching function. When the processor executes the instruction, the processor's arithmetic/logical functional units evaluate the conditional expressions and then the processor performs the branch operation, according to the specified branching function.
摘要:
In general, techniques of the present disclosure relate to synchronizing concurrent access to multiple portions of a data structure. In one example, a method includes, sequentially selecting a plurality of requests from a request queue, wherein at least one of the requests specifies a plurality of requested synchronization objects for corresponding candidate portions of a data structure to which to apply an operation associated with a data element. The method also includes querying one or more sets of identifiers to determine whether one or more of the requested synchronizations objects specified by the selected request are acquirable. The method also includes acquiring each of the requested synchronization objects that are acquirable. The method includes, responsive to acquiring all of the one or more requested synchronization objects, selecting a subset of the candidate portions of the data structure and applying the operation only to the selected subset of the candidate portions.
摘要:
Systems and methods of various embodiments provide mechanisms to support synchronous and asynchronous transactions. Distinct encodings allow an instruction to choose whether to perform any operation synchronously or asynchronously. Separate synchronous and asynchronous result registers hold the data returned in the most recent replies received for synchronous and asynchronous transaction requests, respectively. A status bit indicates whether an asynchronous transaction request is currently outstanding.
摘要:
A system includes a memory and a controller. The controller may include a group of pads and an allocation register. The controller is configured to receive input signals corresponding to the group and allocate each one of the pads to output one of the input signals based on a configuration of pins of the memory. The controller is also configured to redirect the input signals, within the controller, based on the allocation of the pads and output the input signals from the controller into the pads.
摘要:
A standalone router is integrated into a multi-chassis router. Integrating the standalone router into a multi-chassis router requires replacing switch cards in the standalone router with multi-chassis switch cards. The multi-chassis switch cards forward packets to a central switch card chassis for routing within the multi-chassis router. By incrementally replacing standalone switch cards with multi-chassis switch cards in the standalone router, packet forwarding performance is maintained during the integration.