Abstract:
The present invention relates to fibronectin based scaffold domain proteins that bind PCSK9. The invention also relates to the use of the innovative proteins in therapeutic applications to treat atherosclerosis, hypercholesterolemia and other cholesterol related diseases. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative protein.
Abstract:
Fibronectin type III (10Fn3) binding domains having novel designs that are associated with reduced immunogenicity are provided. The application describes alternative 10Fn3 binding domains in which certain immunogenic regions are not modified when producing a binder in order to maintain recognition as a self antigen by the host organism. The application also describes 10Fn3 binding domains in which HLA anchor regions have been destroyed thereby reducing the immunogenic contribution of the adjoining region. Also provided are 10Fn3 domains having novel combinations of modified regions that can bind to a desired target with high affinity.
Abstract:
Nucleic acids encoding modified FGF-21 polypeptides, optionally containing at least one non-codon encoding a naturally-encoded amino acid, and vectors and cells containing are provided. These nucleic acids can be used to express the modified FGF-21 polypeptide encoded thereby. The expressed FGF-21 polypeptides may be used as therapeutics, e.g., in the treatment of diseases associated with fibrosis.
Abstract:
This application provides an improved screening method for the selection of target-binding proteins having desirable biophysical properties. The method combines mRNA display and yeast surface display in a way that takes advantage of the desirable attributes of both processes.
Abstract:
Provided herein are proteins comprising a fibronectin based scaffold (FBS) domain, e.g., 10Fn3 molecules, that bind specifically to a target, and wherein the FBS domain is linked at its C-terminus to a region consisting of PmXn, wherein P is proline, X is any amino acid and wherein n is 0 or an integer that is at least 1 and m is an integer that is at least 1, and wherein the PmXn moiety provides an enhanced property to the FBS domain, e.g., enhanced stability, relative to the protein that is not linked to the PmXn moiety.
Abstract:
Fibronectin type III (10Fn3) binding domains having novel designs that are associated with reduced immunogenicity are provided. The application describes alternative 10Fn3 binding domains in which certain immunogenic regions are not modified when producing a binder in order to maintain recognition as a self antigen by the host organism. The application also describes 10Fn3 binding domains in which HLA anchor regions have been destroyed thereby reducing the immunogenic contribution of the adjoining region. Also provided are 10Fn3 domains having novel combinations of modified regions that can bind to a desired target with high affinity.
Abstract:
Modified FGF-21 polypeptides and uses thereof are provided, for example, for the treatment of diseases associated with fibrosis. Modified FGF-21 polypeptides are disclosed that contain an internal deletion and optionally replacement peptide, optionally modified with at least one non-naturally-encoded amino acid, and/or optionally fused to a fusion partner.
Abstract:
Provided herein are polypeptides which include tenth fibronectin type III domains (10Fn3) that binds to serum albumin. Also provided are fusion molecules comprising a serum albumin binding 10Fn3 joined to a heterologous protein for use in diagnostic and therapeutic applications.
Abstract:
The present invention relates to fibronectin based scaffold domain proteins that bind PCSK9. The invention also relates to the use of the innovative proteins in therapeutic applications to treat atherosclerosis, hypercholesterolemia and other cholesterol related diseases. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative protein.
Abstract:
Fibronectin type III (10Fn3) binding domains having novel designs that are associated with reduced immunogenicity are provided. The application describes alternative 10Fn3 binding domains in which certain immunogenic regions are not modified when producing a binder in order to maintain recognition as a self antigen by the host organism. The application also describes 10Fn3 binding domains in which HLA anchor regions have been destroyed thereby reducing the immunogenic contribution of the adjoining region. Also provided are 10Fn3 domains having novel combinations of modified regions that can bind to a desired target with high affinity.