Abstract:
A number of variations include a product comprising a transfer case comprising a hydraulic system comprising a hydraulic fluid and a hydraulic pump or hydraulic motor wherein the hydraulic system is constructed and arranged to capture energy from regenerative braking of the at least one brake of at least one drive.
Abstract:
A transfer case includes primary and secondary output shafts, along with a secondary torque transfer mechanism and a locking mechanism, which are configured to selectively couple the primary and secondary output shafts. The secondary torque transfer mechanism comprises a sprocket coupled to the secondary output shaft, and a plate clutch coupled to the sprocket to selectively form a friction coupling with the primary output shaft. The locking mechanism selectively couples the primary output shaft to the sprocket, and includes a locking sleeve and an actuator that moves the locking sleeve between a first position and a second position. In the first position, the locking sleeve forms a first splined connection with the primary output shaft and forms a second splined connection with the sprocket. In the second position, the locking sleeve forms the first splined connection with the primary output shaft and forms a second splined connection with the sprocket.
Abstract:
A product may include an engine, and a transmission driven by the engine. An axle assembly may be driven by the engine through the transmission. An electrical machine may be connected to the axle assembly. The electrical machine may selectively drive the axle assembly and may be selectively drivable by the engine through the transmission and the axle assembly. A power transfer unit may be engaged between the electrical machine and the axle assembly.
Abstract:
A number of variations may include a transfer case comprising an input shaft and a first output shaft sharing a primary axis of rotation; a second output shaft offset from the first output shaft; a range shifter comprising a first cam constructed and arranged to selectively shift a vehicle to a high-range drive mode, a low range drive mode, or a neutral drive mode; a mode shifter comprising a second cam constructed and arranged to actuate a synchronizer which selectively shifts the vehicle between a two-wheel drive mode and a four-wheel drive mode a gear train having a first axis offset from the primary axis, and a reversible electric motor which drives the gear train wherein direction of the rotation of the electric motor determines engagement or disengagement of the mode shifter to selectively shift the vehicle between the two-wheel drive mode and the four-wheel drive mode.
Abstract:
A rotary coupling (200) for an all-wheel drive vehicle includes a housing (210), an input part (212), an output part (214), and a clutch (220) disposed within a clutch area (222) of the housing (210) and is movable between an engaged position and a disengaged position to change an amount of torque transferred from the input part (212) to the output part (214). A fluid reservoir (260) is defined in the housing (210). A lubrication valve (250) is movable between an open position and a closed position for controlling supply of a fluid from the fluid reservoir (260) to the clutch area (222) of the housing (210). An actuator (238) is connected to the clutch (220) to move the clutch (220) between the engaged position and the disengaged position and connected to the lubrication valve (250) to move the lubrication valve (250) between the open position and the closed position.
Abstract:
The disclosure relates to a product for storing and using energy delivered through a vehicle's drive wheel. A rotatable element may rotate with the drive wheel. A first rotating mechanism may provide an input energy when rotated by the rotatable element. A storage device may receive and store the input energy. A second rotating mechanism may rotate in reaction to selective delivery of the input energy from the storage device to the second rotating mechanism, and may drive the rotatable element. The rotatable element may be adapted to rotate in a first rotational direction to rotate the first rotating mechanism, and may rotate in the same direction when rotated by the second rotating mechanism. A heat transfer device may surround at least part of the storage device. The exhaust system may be routed through the heat exchange device to heat the storage device and increase stored energy.
Abstract:
A vehicle transfer case is provided having a housing, a primary shaft rotatably mounted within the housing, a secondary shaft selectively driven by the primary shaft, a hub torsionally fixed with the primary shaft, a clutch housing selectively torsionally connected with the hub via a friction pack, an engagement wheel torsionally fixed with respect to the clutch housing and torsionally connected with the secondary shaft via a flexible torsional force member, the friction pack, upon engagement, causing the clutch housing to be selectively connected with the hub, a reservoir system fixed with respect to the housing capturing lubricant energized by result of the operation of the flexible torsional member, the reservoir system delivering splashed lubricant to a reservoir system, and an Archimedes' screw pump delivering lubricant from a sump adjacent to the secondary shaft to the secondary reservoir system.
Abstract:
A powertrain arrangement for a transverse mounted motor for an electric powered automotive passenger vehicle including opposing wheel shafts for powering two parallel mounted wheels, the shafts rotating about a first axis, the shafts having at least one end torsionally connected with a differential, an electrical rotor torsionally connected with the wheel shafts via a planetary gear train, an electrical stator surrounding the rotor, a casing supporting the rotor and the wheel shafts, the casing encompassing the stator, the casing having a floor forming a lubricant reservoir, and a baffle located in the lubricant reservoir, the baffle having barriers generally transverse to the first axis and at least one of the barriers having a lower window allowing fluid communication underneath the barrier.
Abstract:
A powertrain for a vehicle includes an internal combustion engine and a transfer case. The transfer case includes a primary output shaft, an electric motor, and a planetary gear set. The primary output shaft receives engine torque from the internal combustion engine. The electric motor includes a rotor and a stator. The planetary gear set includes a sun gear rotatably fixed to the rotor, a ring gear, planet gears arranged radially between and engaging the sun gear and the ring gear, and a planet carrier coupled to the planet gears and rotatably fixed to the primary output shaft. The ring gear is selectively groundable for selectively transferring torque between the electric motor and the primary output shaft.
Abstract:
A product comprising: an axle shaft and an input shaft, wherein the axle shaft is coaxial with the input shaft; a clutch operatively connected to the axle shaft and the input shaft constructed and arranged to selectively couple and decouple the input shaft and the axle shaft; an actuator operatively connected to the clutch to drive the clutch; and a synchronizer operatively connected to the clutch to synchronize the coupling of the input shaft and the axle shaft.