Abstract:
An energy storage system for a military vehicle includes a lower support, a battery supported on the lower support, a bracket coupled to the battery, and an upper isolator mount coupled between the bracket and a wall. The upper isolator mount is configured to provide front-to-back vibration isolation of the battery relative to the wall.
Abstract:
Methods and systems are provided for a detachable fuel pipe of a vehicle fuel system. In one example, a method may include, in response to a detected vehicle collision, removing physical and fluidic couplings between the detachable fuel pipe and a fuel tank. The method may further include sealing the fuel tank upon removing the couplings to the detachable fuel pipe.
Abstract:
Methods and systems are provided for a detachable fuel pipe of a vehicle fuel system. In one example, a method may include, in response to a detected vehicle collision, removing physical and fluidic couplings between the detachable fuel pipe and a fuel tank. The method may further include sealing the fuel tank upon removing the couplings to the detachable fuel pipe.
Abstract:
An apparatus and a method for distributing torque from a power source to a plurality of vehicle wheels, where the method can include obtaining data indicative of a rotational velocity of one of the wheels and data indicative of a position of the accelerator, determining a wheel acceleration based on the rotational velocity data, comparing the wheel acceleration and at least one of the rotational velocity data and the position data with a respective threshold condition, signaling the actuator to engage the second subset with the torque of the power source when at least one of the threshold conditions is met, and signaling the actuator to disengage the second subset from the power source when none of the threshold conditions is met. The apparatus can include a powertrain with a system having a control device that can distribute the torque in accordance with the method.
Abstract:
An apparatus and a method for distributing torque from a power source to a plurality of vehicle wheels, where the method can include obtaining data indicative of a rotational velocity of one of the wheels and data indicative of a position of the accelerator, determining a wheel acceleration based on the rotational velocity data, comparing the wheel acceleration and at least one of the rotational velocity data and the position data with a respective threshold condition, signaling the actuator to engage the second subset with the torque of the power source when at least one of the threshold conditions is met, and signaling the actuator to disengage the second subset from the power source when none of the threshold conditions is met. The apparatus can include a powertrain with a system having a control device that can distribute the torque in accordance with the method.
Abstract:
An energy storage system for a military vehicle includes a battery housing defining a lower end and an upper end, a battery disposed within the battery housing, a bracket coupled to the battery housing at or proximate the upper end thereof, a lower support supporting the lower end of the battery housing, and an upper connector extending from the bracket. The upper connector is configured to engage a rear wall of a cab of the military vehicle.
Abstract:
A driveline includes a driver configured to be positioned between an engine and a transmission. The driver includes a housing, a motor/generator, and a clutch. The housing includes an engine mount configured to couple to the engine and a backing plate configured to couple to the transmission. The motor/generator is disposed within the housing and configured to couple to an input of the transmission. The clutch is disposed within the housing and coupled to the motor/generator. The clutch is configured to selectively couple an output of the engine to the motor/generator. The clutch is configured to be spring-biased into engagement with the engine and pneumatically disengaged by an air supply selectively provided thereto.
Abstract:
An auxiliary power take-off assembly (32) for a transmission (6) of a motor vehicle (2) having a torque converter (8). A driveshaft (30) is permanently connected to a drive motor (4), via the pump shaft (24) of the torque converter (8). In addition, the auxiliary power take-off assembly (32) has a transmission drive chain which includes at least a drive input element (34) and a drive output element (42) connected to an additional assembly (66) to be driven, and a shifting element (64, 68). The shifting element (64, 68) is functionally arranged between the driveshaft (30) and the drive input element (34) of the transmission chain for the optionally connecting the driveshaft (30) to the drive input element (34).
Abstract:
An active differential for the controlled distribution of a drive torque generated by a drive motor to two drive shafts includes a planetary gear train configured to couple the two drive shafts to a drive shaft of the drive motor, and a distributor motor including a distributor shaft. The distributor motor produces a torque, with a distribution of a drive torque to the two drive shafts being dependant on the torque produced by the distributor motor. The distributor shaft and the planetary gear train are coupled by a coupling device which only transmits a torque from the planetary gear train to the distributor shaft when a rotational speed difference between rotational speeds of the two output shafts exceeds a predetermined limit value and when a connection condition depending on an operating condition of the distributor motor is satisfied.
Abstract:
A transfer case includes primary and secondary output shafts, along with a secondary torque transfer mechanism and a locking mechanism, which are configured to selectively couple the primary and secondary output shafts. The secondary torque transfer mechanism comprises a sprocket coupled to the secondary output shaft, and a plate clutch coupled to the sprocket to selectively form a friction coupling with the primary output shaft. The locking mechanism selectively couples the primary output shaft to the sprocket, and includes a locking sleeve and an actuator that moves the locking sleeve between a first position and a second position. In the first position, the locking sleeve forms a first splined connection with the primary output shaft and forms a second splined connection with the sprocket. In the second position, the locking sleeve forms the first splined connection with the primary output shaft and forms a second splined connection with the sprocket.