摘要:
A strained semiconductor structure and method of making the structure. The method includes: forming a pad layer on a top surface of a silicon layer of a substrate, the substrate comprising the silicon layer separated from a supporting substrate by a buried oxide layer; forming openings in the pad layer and etching trenches through the silicon layer to the buried oxide layer in the openings to form silicon regions from the silicon layer; forming spacers on the entirety of sidewalls of the silicon regions exposed in the trenches; forming oxide regions in corners of the silicon regions proximate to both the sidewalls and the buried oxide layer to form strained silicon regions, the oxide regions not extending to the pad layer; and removing at least a portion of the spacers and filling remaining spaces in the trenches with silicon to form filled regions abutting the strained silicon region.
摘要:
A field effect transistor and a method of fabricating the field effect transistor. The field effect transistor includes: a silicon body, a perimeter of the silicon body abutting a dielectric isolation; a source and a drain formed in the body and on opposite sides of a channel formed in the body; and a gate dielectric layer between the body and an electrically conductive gate electrode, a bottom surface of the gate dielectric layer in direct physical contact with a top surface of the body and a bottom surface the gate electrode in direct physical contact with a top surface of the gate dielectric layer, the gate electrode having a first region having a first thickness and a second region having a second thickness, the first region extending along the top surface of the gate dielectric layer over the channel region, the second thickness greater than the first thickness.
摘要:
A structure and a method of making the structure. The structure includes a field effect transistor including: a first and a second source/drain formed in a silicon substrate, the first and second source/drains spaced apart and separated by a channel region in the substrate; a gate dielectric on a top surface of the substrate over the channel region; and an electrically conductive gate on a top surface of the gate dielectric; and a dielectric pillar of a first dielectric material over the gate; and a dielectric layer of a second dielectric material over the first and second source/drains, sidewalls of the dielectric pillar in direct physical contact with the dielectric layer, the dielectric pillar having no internal stress or an internal stress different from an internal stress of the dielectric layer.
摘要:
A structure and a method of making the structure. The structure includes a field effect transistor including: a first and a second source/drain formed in a silicon substrate, the first and second source/drains spaced apart and separated by a channel region in the substrate; a gate dielectric on a top surface of the substrate over the channel region; and an electrically conductive gate on a top surface of the gate dielectric; and a dielectric pillar of a first dielectric material over the gate; and a dielectric layer of a second dielectric material over the first and second source/drains, sidewalls of the dielectric pillar in direct physical contact with the dielectric layer, the dielectric pillar having no internal stress or an internal stress different from an internal stress of the dielectric layer.
摘要:
A method for configuring J electromagnetic radiation sources (J≧2) to serially irradiate a substrate. Each source has a different function of wavelength and angular distribution of emitted radiation. The substrate includes a base layer and I stacks (I≧2; J≦I) thereon. Pj denotes a same source-specific normally incident energy flux on each stack from source j. in each of I independent exposure steps, the I stacks are concurrently exposed to radiation from the J sources, Vi and Si respectively denote an actual and target energy flux transmitted into the substrate via stack i in exposure step i (i=1, . . . , I). t(i) and Pt(i) are computed such that: Vi is maximal through deployment of source t(i) as compared with deployment of any other source for i=1, . . . , I; and an error E being a function of |V1−S1|, |V2−S2|, . . . , |Vi−Si| is about minimized with respect to Pi (i=1, . . . , I).
摘要:
A structure formation method. First, a structure is provided including (a) a fin region comprising (i) a first source/drain portion having a first surface and a third surface parallel to each other, not coplanar, and both exposed to a surrounding ambient, (ii) a second source/drain portion having a second surface and a fourth surface parallel to each other, not coplanar, and both exposed to the surrounding ambient, and (iii) a channel region disposed between the first and second source/drain portions, (b) a gate dielectric layer, and (c) a gate electrode region, wherein the gate dielectric layer (i) is sandwiched between, and (ii) electrically insulates the gate electrode region and the channel region. Next, a patterned covering layer is used to cover the first and second surfaces but not the third and fourth surfaces. Then, the first and second source/drain portions are etched at the third and fourth surfaces, respectively.
摘要:
A verification system disclosed herein uses the unique signatures of an IC to perform authentication of the IC after the IC is shipped to a customer. The verification system records the fingerprint and associated IC identifier with the fingerprint into a data structure. The data structure is supplied to the customer for use in the customer's own security systems. When an IC interfaces with the customer's system, the verification system requests the IC's identifier and selects a data structure corresponding to that IC identifier. The verification system then performs a test on the IC (e.g. remotely operates the IC at 1V), records the resulting data and compares the test results with the corresponding data in the data structure. If a predetermined condition is satisfied then the IC is verified to be authentic. If not, the verification system responds, for example, by flagging the customer's security system.
摘要:
A structure and a method for forming the same. The structure includes (a) a substrate which includes a top substrate surface which defines a reference direction perpendicular to the top substrate surface, (b) N semiconductor regions on the substrate, and (c) P semiconductor regions on the substrate, N and P being positive integers. The N semiconductor regions comprise dopants. The P semiconductor regions do not comprise dopants. The structure further includes M interconnect layers on top of the substrate, the N semiconductor regions, and the P semiconductor regions, M being a positive integer. The M interconnect layers include an inductor. (i) The N semiconductor regions do not overlap and (ii) the P semiconductor regions overlap the inductor in the reference direction. A plane perpendicular to the reference direction and intersecting a semiconductor region of the N semiconductor regions intersects a semiconductor region of the P semiconductor regions.
摘要:
A method of reducing parametric variation in an integrated circuit (IC) chip and an IC chip with reduced parametric variation. The method includes: on a first wafer having a first arrangement of chips, each IC chip divided into a second arrangement of regions, measuring a test device parameter of test devices distributed in different regions; and on a second wafer having the first arrangement of IC chips and the second arrangement of regions, adjusting a functional device parameter of identically designed field effect transistors within one or more regions of all IC chips of the second wafer based on a values of the test device parameter measured on test devices in regions of the IC chip of the first wafer by a non-uniform adjustment of physical or metallurgical polysilicon gate widths of the identically designed field effect transistors from region to region within each IC chip.
摘要:
A structure and a method of making the structure. The structure includes a field effect transistor including: a first and a second source/drain formed in a silicon substrate, the first and second source/drains spaced apart and separated by a channel region in the substrate; a gate dielectric on a top surface of the substrate over the channel region; and an electrically conductive gate on a top surface of the gate dielectric; and a dielectric pillar of a first dielectric material over the gate; and a dielectric layer of a second dielectric material over the first and second source/drains, sidewalls of the dielectric pillar in direct physical contact with the dielectric layer, the dielectric pillar having no internal stress or an internal stress different from an internal stress of the dielectric layer.