摘要:
Methods for forming semiconductor devices are provided. A semiconductor substrate is etched such that the semiconductor substrate defines a trench and a preliminary active pattern. The trench has a floor and a sidewall. An insulating layer is provided on the floor and the sidewall of the trench and a spacer is formed on the insulating layer such that the spacer is on the sidewall of the trench and on a portion of the floor of the trench. The insulating layer is removed on the floor of the trench and beneath the spacer such that a portion of the floor of the trench is at least partially exposed, the spacer is spaced apart from the floor of the trench and a portion of the preliminary active pattern is partially exposed. A portion of the exposed portion of the preliminary active pattern is partially removed to provide an active pattern that defines a recessed portion beneath the spacer. A buried insulating layer is formed in the recessed portion of the active pattern. Related devices are also provided.
摘要:
A method of forming a semiconductor device may include forming a fin structure extending from a substrate. The fin structure may include first and second source/drain regions and a channel region therebetween, and the first and second source/drain regions may extend a greater distance from the substrate than the channel region. A gate insulating layer may be formed on the channel region, and a gate electrode may be formed on the gate insulating layer so that the gate insulating layer is between the gate electrode and the channel region. Related devices are also discussed.
摘要:
Methods of fabricating metal-oxide-semiconductor (MOS) transistors having elevated source/drain regions are provided. The MOS transistors formed by these methods may include a gate pattern formed to cross over a predetermined region of a substrate. Recessed regions are provided in the substrate adjacent to the gate pattern. Epitaxial layers are provided on bottom surfaces of the recessed regions. High concentration impurity regions are provided in the epitaxial layers. The recessed regions may be formed using a chemical dry etching techniques.
摘要:
Methods of fabricating metal-oxide-semiconductor (MOS) transistors having elevated source/drain regions are provided. The MOS transistors formed by these methods may include a gate pattern formed to cross over a predetermined region of a substrate. Recessed regions are provided in the substrate adjacent to the gate pattern. Epitaxial layers are provided on bottom surfaces of the recessed regions. High concentration impurity regions are provided in the epitaxial layers. The recessed regions may be formed using a chemical dry etching techniques.
摘要:
A field effect transistor includes a vertical fin-shaped semiconductor active region having an upper surface and a pair of opposing sidewalls on a substrate, and an insulated gate electrode on the upper surface and opposing sidewalls of the fin-shaped active region. The insulated gate electrode includes a capping gate insulation layer having a thickness sufficient to preclude formation of an inversion-layer channel along the upper surface of the fin-shaped active region when the transistor is disposed in a forward on-state mode of operation. Related fabrication methods are also discussed.
摘要:
Integrated circuit field effect transistors include an integrated circuit substrate and a fin that projects away from the integrated circuit substrate, extends along the integrated circuit substrate, and includes a top that is remote from the integrated circuit substrate. A channel region is provided in the fin that is doped a conductivity type and has a higher doping concentration of the conductivity type adjacent the top than remote from the top. A source region and a drain region are provided in the fin on opposite sides of the channel region, and an insulated gate electrode extends across the fin adjacent the channel region. Related fabrication methods also are described.
摘要:
Embodiments of the present invention include heterogeneous substrates, integrated circuits formed on such heterogeneous substrates. The heterogeneous substrates according to certain embodiments of the present invention include a first Group IV semiconductor layer (e.g., silicon), a second Group IV pattern (e.g., a silicon-germanium pattern) that includes a plurality of individual elements on the first Group IV semiconductor layer, and a third Group IV semiconductor layer (e.g., a silicon epitaxial layer) on the second Group IV pattern and on a plurality of exposed portions of the first Group IV semiconductor layer. The second Group IV pattern may be removed in embodiments of the present invention. In these and other embodiments of the present invention, the third Group IV semiconductor layer may be planarized.
摘要:
Methods for forming semiconductor devices are provided. A semiconductor substrate is etched such that the semiconductor substrate defines a trench and a preliminary active pattern. The trench has a floor and a sidewall. An insulating layer is provided on the floor and the sidewall of the trench and a spacer is formed on the insulating layer such that the spacer is on the sidewall of the trench and on a portion of the floor of the trench. The insulating layer is removed on the floor of the trench and beneath the spacer such that a portion of the floor of the trench is at least partially exposed, the spacer is spaced apart from the floor of the trench and a portion of the preliminary active pattern is partially exposed. A portion of the exposed portion of the preliminary active pattern is partially removed to provide an active pattern that defines a recessed portion beneath the spacer. A buried insulating layer is formed in the recessed portion of the active pattern. Related devices are also provided.
摘要:
Integrated circuit field effect transistors include an integrated circuit substrate and a fin that projects away from the integrated circuit substrate, extends along the integrated circuit substrate, and includes a top that is remote from the integrated circuit substrate. A channel region is provided in the fin that is doped a conductivity type and has a higher doping concentration of the conductivity type adjacent the top than remote from the top. A source region and a drain region are provided in the fin on opposite sides of the channel region, and an insulated gate electrode extends across the fin adjacent the channel region. Related fabrication methods also are described.
摘要:
Fin-Field Effect Transistors (Fin-FETs) are provided. A fin is provided on an integrated circuit substrate. The fin defines a trench on the integrated circuit substrate. A first insulation layer is provided in the trench such that a surface of the first insulation layer is recessed beneath a surface of the fin exposing sidewalls of the fin. A protection layer is provided on the first insulation layer and a second insulation layer is provided on the protection layer in the trench such that protection layer is between the second insulation layer and the sidewalls of the fin.