Abstract:
Disclosed are a method and an apparatus for transmitting D2D signals, wherein the method comprises: detecting a synchronization signal and/or a D2D signal, and determining a synchronization reference for sending or receiving other D2D signals based on the synchronization signal and/or the D2D signal; based on information carried in the detected synchronization signal and/or the D2D signal, determining a D2D resource configuration; and based on the determined synchronization reference for sending or receiving the other D2D signals and the determined D2D resource configuration, determining a resource position used for transmitting D2D signals, and sending or receiving the other D2D signals in the resource position. By enabling a UE to learn the D2D resource configuration based on the synchronization signal and/or the D2D signal, the present application prevents the UE from always using fixed resources when transmitting D2D signals, thus reducing mutual interference and improving transmission efficiency and quality.
Abstract:
The present invention relates to the technical field of wireless communications. Disclosed are a method, system and device for determining a transmission link type, to solve the receiving/transmitting duplexing problem in the prior art of a D2D link receiving terminal on a D2D link and an N2D link. The method comprises: a D2D receiving terminal reports to a network side device a first resource usage request on an N2D link, such that the network side device, after receiving the first resource usage request, determines the transmission link type of the D2D receiving terminal over a subframe n; and according to the type of the subframe n or the link type indication information received from the network side device, the D2D receiving terminal determines the transmission link type over the subframe n, the subframe n being a D2D subframe. An embodiment of the present invention improves system resource utilization and system performance.
Abstract:
Disclosed in the present application is a D2D signal transmission method and device, used for enabling a UE, on the basis of the D2D parameters thereof, to determine a resource hopping pattern between different D2D transmission physical resources, and thereby obtain a plurality of D2D transmission physical resources, such that a D2D UE transmitting a D2D signal at any time in the same sub-frame can subsequently transmit a D2D signal in a different sub-frame, thus improving the overall D2D transmission performance of the system. The method provided in the present application comprises: a first UE, on the basis of pre-set D2D parameters, determines the resource hopping pattern between a plurality of D2D transmission physical resources needed to be used by the first UE; the first UE, on the basis of said resource hopping pattern, determines the plurality of D2D transmission physical resources; and the first UE sends a D2D signal on the determined plurality of D2D transmission physical resources.
Abstract:
Disclosed are methods and devices for transmitting and receiving data and system for receiving data. A method for transmitting data includes determining, by a transmitting device, a first transmission resource for data transmission, and determining a second transmission resource from a second transmission resource pool corresponding to the first transmission resource; and transmitting, by the transmitting device, to-be-transmitted data over the first transmission resource and the second transmission resource. The receiving device can receive data information over the first transmission resource and the second transmission resource associated with the first transmission resource, so it is able to ensure that the receiving device combines the signals transmitted from a UE at the transmitting device over a plurality of transmission resources and detects the combined signals, so as to improve the detection success rate, thereby to further improve the transmission performance.
Abstract:
A channel state information receiving method, a channel state information feedback method, a device, a base station and a terminal are provided. It is related to telecommunication field. The receiving method includes: obtaining group identifiers of groups into which multiple terminals having accessed to a base station are classified; transmitting a triggering signaling to one group of terminals having an identical group identifier; and receiving, on a pre-configured resource block, pieces of channel state information respectively fed back by the group of terminals having the identical group identifier in response to the triggering signaling. With the above technical solution, consumption of downlink signalings of the base station can be reduced and feedback efficiency of channel state information can be improved.
Abstract:
The disclosure discloses a method and apparatus for feeding back channel state information, and a method and apparatus for transmitting data. The method for feeding back channel state information includes: calculating channel state information according to a first codebook, where the first codebook is a set of elements and each of the elements is a set of pre-coding matrixes; and feeding back the channel state information.
Abstract:
Disclosed are a D2D signal detecting method and device, comprising: a user equipment determines a physical resource for discovery signal detection; the user equipment determines the number of discovery resources used by the discovery signals according to the physical resource area for discovery signal detection, or according to a discovery resource set of the discovery sequence contained in the discovery signal detected in the physical resource area, the number of discovery resources being the number of discovery resources used in one discovery period or in the physical resource area for sending the same discovery signal; the user equipment detects the discovery signals according to the determined number of discovery resources. The present invention can improve performance loss caused by D2D signal detection and can reduce the complexity of D2D signal detection by user equipment.
Abstract:
The disclosure discloses a method and apparatus for feeding back channel state information, and a method and apparatus for transmitting data. The method for feeding back channel state information includes: calculating channel state information according to a first codebook, where the first codebook is a set of elements and each of the elements is a set of pre-coding matrixes; and feeding back the channel state information.
Abstract:
Disclosed are a D2D data transmission method and device. The method comprises: determining, by a D2D data sending end, a state of each sending opportunity in a sending window in the same manner as a D2D data receiving end, wherein the sending window is uniformly divided into a plurality of sending opportunities, and the state of each sending opportunity comprises a data sending state and a silent state; and sending D2D data to the D2D data receiving end in the sending opportunity of each data sending state in the sending window. By means of the technical solution provided in the embodiments of the present application, a D2D data sending end sends data on different resources (sending opportunities) or becomes silent, so that different D2D data sending ends are staggered on the resources, thereby alleviating the influence of “near-far” effects.
Abstract:
The present invention relates to the field of communications, and disclosed are a method and device for determining a PDSCH transmission resource. The method is: in the embodiments of the present invention, a network side determines a mapping relationship between a PDSCH transmission point and a zero-power CSI-RS for UE, and the UE does not receive a PDSCH over a zero-power CSI-RS resource which corresponds to a cell currently transmitting the PDSCH and measures an interference and still receives the PDSCH over a zero-power CSI-RS resource which corresponds to a cell not currently transmitting the PDSCH and measures an interference, thereby ensuring that the UE can accurately measure the interference and further improving the accuracy of CQI estimation; furthermore, the signalling overhead required for realizing the technical solution of the present invention is very small, only some RRC signalings are required, and a dynamic signaling can reuse a current signaling to the greatest extent, in this way, the compatibility of the system is effectively improved and the complexity of implementation is reduced.