Abstract:
A diagnostic virtual machine having access to resources of an infrastructure as a service cloud may be created. A user device may be provided access to the diagnostic virtual machine. In some embodiments, the diagnostic virtual machine may be configured to monitor a cluster of hypervisors, and the resources of the infrastructure as a service cloud which the diagnostic virtual machine has access to may include physical resources of the infrastructure as a service cloud that are associated with the cluster of hypervisors.
Abstract:
Described embodiments provide systems and methods for replaying a service graph of a plurality of microservices. A device stores a plurality of snapshots of a service graph of a plurality of microservices generated for each of a plurality time increments over a time period. Each of the plurality of snapshots of the service graphs include metrics at a respective time increment from execution of each of the plurality of microservices. The device receives a request to replay the service graph. Responsive to the request, the device displays at least two or more of the plurality of snapshots of the service graph in sequence corresponding to two or more of the plurality of time increments.
Abstract:
Described embodiments provide systems and methods for executing a plurality of validation tests to validate a plurality of microservices of one or more services. A device intermediary to a plurality of microservices of one or more services identifies a plurality of validation tests, each of the validation tests configured with a timeline, a target microservice and one of a synthetic error or a latency to implement to validate the target microservice. The device executes a first validation test of the plurality of validation tests to implement, over a first timeline, one of a first synthetic error or a first latency in responding to a first target microservice of the plurality of microservices. The device executes a second validation test of the plurality of validation tests to implement, over a second timeline, one of a second synthetic error or a second latency in responding to a second target microservice of the plurality of microservices. The device validates, responsive to executing each of the plurality of validation tests, the plurality of microservices of the one or more services.
Abstract:
The disclosure is directed towards systems and methods for injecting or introducing synthetic errors and latency for testing purposes into microservices provided by one or more servers. A device acting as an intermediary to communication can inject errors into responses or requests traversing the device. The errors can include additional latency, dropped packets, or memory or disk errors. Introducing errors and latency for testing purposes can be used to proactively monitor and identify issues with resources.
Abstract:
Described embodiments provide systems and methods for replaying a service graph of a plurality of microservices. A device stores a plurality of snapshots of a service graph of a plurality of microservices generated for each of a plurality time increments over a time period. Each of the plurality of snapshots of the service graphs include metrics at a respective time increment from execution of each of the plurality of microservices. The device receives a request to replay the service graph. Responsive to the request, the device displays at least two or more of the plurality of snapshots of the service graph in sequence corresponding to two or more of the plurality of time increments.
Abstract:
A cloud system may create and support multiple network offerings for virtual machines in a cloud zone. Physical networks comprising sets of network elements, such as routers, gateways, firewalls, load balancers, and other network hardware, may be created and updated within a zone. Network offerings may be defined and associated, using tags or other techniques, with virtual machine networks, physical networks and/or network elements. Cloud end users may request specific network offerings when creating virtual machines, or may request to move existing virtual machines from one network offering to another. The cloud system may use the requested network offering to identify the virtual machine network, physical network, and/or network elements corresponding to the requested network offering. The cloud system may allocate a new virtual machine network and configure the network elements within the associated physical network to provide network services to the virtual machine.
Abstract:
A cloud system may create and support multiple network offerings for virtual machines in a cloud zone. Physical networks comprising sets of network elements, such as routers, gateways, firewalls, load balancers, and other network hardware, may be created and updated within a zone. Network offerings may be defined and associated, using tags or other techniques, with virtual machine networks, physical networks and/or network elements. Cloud end users may request specific network offerings when creating virtual machines, or may request to move existing virtual machines from one network offering to another. The cloud system may use the requested network offering to identify the virtual machine network, physical network, and/or network elements corresponding to the requested network offering. The cloud system may allocate a new virtual machine network and configure the network elements within the associated physical network to provide network services to the virtual machine.
Abstract:
A cloud system may create physical resource tags to store relationships between cloud computing offerings, such as computing service offerings, storage offerings, and network offerings, and the specific physical resources in the cloud computing environment. Cloud computing offerings may be presented to cloud customers, the offerings corresponding to various combinations of computing services, storage, networking, and other hardware or software resources. After a customer selects one or more cloud computing offerings, a cloud resource manager or other component within the cloud infrastructure may retrieve a set of tags and determine a set of physical hardware resources associated with the selected offerings. The physical hardware resources associated with the selected offerings may be subsequently used to provision and create the new virtual machine and its operating environment.