Abstract:
A method for forming a plurality of precision holes in a substrate by drilling, including affixing a sacrificial cover layer to a surface of the substrate, positioning a laser beam in a predetermined location relative to the substrate and corresponding to a desired location of one of the plurality of precision holes, forming a through hole in the sacrificial cover layer by repeatedly pulsing a laser beam at the predetermined location, and pulsing the laser beam into the through hole formed in the sacrificial cover layer. A work piece having precision holes including a substrate having the precision holes formed therein, wherein a longitudinal axis of each precision hole extends in a thickness direction of the substrate, and a sacrificial cover layer detachably affixed to a surface of the substrate, such that the sacrificial cover layer reduces irregularities of the precision holes.
Abstract:
A method of manufacturing an optical fiber, the method including drawing a bare optical fiber from an optical fiber preform along a draw pathway. The method further includes during the drawing step, moving a first fluid bearing from a first position to a second position, the first position being removed from the draw pathway and the second position being disposed in the draw pathway such that the movement of the first fluid bearing to the second position causes at least a first portion of the draw pathway to change direction.
Abstract:
Embodiments of thermally and chemically strengthened glass-based articles are disclosed. In one or more embodiments, the glass-based articles may include a first surface and a second surface opposing the first surface defining a thickness (t), a first CS region comprising a concentration of a metal oxide that is both non-zero and varies along a portion of the thickness, and a second CS region being substantially free of the metal oxide of the first CS region, the second CS region extending from the first surface to a depth of compression of about 0.17•t or greater. In one or more embodiments, the first surface is flat to 100 μm total indicator run-out (TIR) along any 50 mm or less profile of the first surface. Methods of strengthening glass sheets are also disclosed, along with consumer electronic products, laminates and vehicles including the same are also disclosed.
Abstract:
A strengthened cover glass or glass-ceramic sheet or article as well as processes and systems for making the strengthened glass or glass-ceramic sheet or article is provided for use in consumer electronic devices. The process comprises cooling the cover glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened cover glass sheets for use in or on consumer electronic products.
Abstract:
Embodiments of thermally and chemically strengthened glass-based articles are disclosed. In one or more embodiments, the glass-based articles may include a first surface and a second surface opposing the first surface defining a thickness (t), a first CS region comprising a concentration of a metal oxide that is both non-zero and varies along a portion of the thickness, and a second CS region being substantially free of the metal oxide of the first CS region, the second CS region extending from the first surface to a depth of compression of about 0.17●t or greater. In one or more embodiments, the first surface is flat to 100 μm total indicator run-out (TIR) along any 50 mm or less profile of the first surface. Methods of strengthening glass sheets are also disclosed, along with consumer electronic products, laminates and vehicles including the same are also disclosed.
Abstract:
Apparatus and methods for bending thin glass sheets are described. The methods and apparatus described include positioning an auxiliary heater between a furnace and an entrance to glass bending station and/or positioning a downstream auxiliary heater between a glass bending station and a quench station. Also described are apparatus and methods for bending thin glass sheets by compensating for heat loss and maintaining the glass viscosity within a workable range for the bending or forming operation. Auxiliary heating elements can be placed in locations that would otherwise provide for excessive heat loss.
Abstract:
A honeycomb extrusion die (100), a method of making the same, and an apparatus for forming the same. The die (100) includes: a feed hole plate (202) comprising an input surface (202A), an opposing output surface (202B), and feed holes (108) configured to guide a batch material from the input surface (202A) to the output surface (202B); and a pin assembly (204) comprising pins (300) disposed on the feed hole plate (202). At least one of the pins includes: a tail (304); a head (302) connected to the tail (304) and comprising alignment surfaces (314) configured to align the pins (300), flow surfaces (316) disposed between the alignment surfaces (314), and a tapered portion (310) comprising a contact surface (308) adhered to the output surface (202B) of the feed hole plate (202); and a first groove (306) disposed between the head (302) and the tail (304). In the pin assembly (204), the alignment surfaces (314) contact adjacent pins (300) to align the pins (300), such that discharge slots are at least partially defined by the tails (304) of the pins (300).
Abstract:
Method and apparatus are provided for the controlled transport of glass sheets (13) or glass ribbons (15) undergoing heating and/or cooling (e.g., thermal tempering) by conduction more than convection. The controlled transport is achieved by applying a gas-based force (17,19,21) to the glass sheet (13) or glass ribbon (15). The gas-based force (17,19,21) can move the glass sheet (13) or glass ribbon (15) in a desired direction and/or cause it to acquire a desired orientation. The gas-based force (17,19,21) can also cause the glass sheet (13) or glass ribbon (15) to retain a desired position and/or a desired orientation. The gas-based force (17,19,21) can be applied to the glass sheet (13) or glass ribbon (15) continuously or intermittently. Systems for transitioning a glass sheet (13) or a glass ribbon (15) between a heating zone (27) and a quench zone (31) are also discussed.
Abstract:
A strengthened glass sheet product along with a process and an apparatus for strengthening a glass sheet are provided. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
A strengthened glass sheet product along with a process and an apparatus for strengthening a glass sheet are provided. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.