Abstract:
A method for applying a surface treatment to a plugged honeycomb body comprising porous wall includes: mixing particles of an inorganic material with a liquid vehicle and a binder material to form a liquid-particulate-binder stream; mixing the liquid-particulate-binder stream with an atomizing gas, directing the liquid-particulate-binder stream into an atomizing nozzle thereby atomizing the particles into liquid-particulate-binder droplets comprised of the liquid vehicle, the binder material, and the particles; conveying the droplets toward the plugged honeycomb body by a gaseous carrier stream, wherein the gaseous carrier stream comprises a carrier gas and the atomizing gas; evaporating substantially all of the liquid vehicle from the droplets to form agglomerates comprised of the particles and the binder material; depositing the agglomerates onto the porous walls of the plugged honeycomb body; wherein the deposited agglomerates are disposed on, or in, or both on and in, the porous walls.
Abstract:
Filtration articles herein exhibit excellent filtration efficiency and pressure drop before and after water durability testing. The articles comprise: a honeycomb filter body; inorganic deposits disposed within the honeycomb filter body at a loading of less than or equal to 20 grams of the inorganic deposits per liter of the honeycomb filter body. The inorganic deposits are comprised of refractory inorganic nanoparticles bound by a high temperature binder comprising one or more inorganic components. At least a portion of the inorganic deposits form a porous inorganic network over portions of inlet walls of the honeycomb filter body.
Abstract:
An aqueous cell culture medium composition includes an aqueous cell culture solution configured to support the culture of mammalian cells. The composition further includes a synthetic polymer conjugated to a polypeptide dissolved in the aqueous cell culture solution. The synthetic polymer conjugated to a polypeptide is configured to attach to the surface of a cell culture article under cell culture conditions. Incubation of the aqueous cell culture medium composition on a cell culture surface under cell culture conditions results is attachment to the surface of the synthetic polymer conjugated to the polypeptide.
Abstract:
Green ceramic mixtures include at least one inorganic component, at least one organic binder, and a stable emulsion including at least one lubricant, at least one aqueous solvent, and at least one emulsifier. Methods for forming ceramic bodies include forming a green ceramic mixture including a stable emulsion and extruding the green ceramic mixture. The methods and green ceramic mixtures can be used to produce green and fired ceramic bodies.
Abstract:
Green ceramic mixtures include at least one inorganic component, at least one organic binder, and a stable emulsion including at least one lubricant, at least one aqueous solvent, and at least one emulsifier. Methods for forming ceramic bodies include forming a green ceramic mixture including a stable emulsion and extruding the green ceramic mixture. The methods and green ceramic mixtures can be used to produce green and fired ceramic bodies.
Abstract:
Green ceramic mixture for extruding into an extruded green body includes one or more inorganic components selected from the group consisting of ceramic ingredients, inorganic ceramic-forming ingredients, and combinations thereof, at least one mineral oil, and from about 0.01 wt % to about 0.45 wt % of an antioxidant based on a total weight of the inorganic component(s), by super addition. The mineral oil has a kinematic viscosity of ≥about 1.9 cSt at 100° C. The at least one antioxidant may have a degradation-rate peak temperature that is greater than the degradation-rate peak temperature of the at least one mineral oil. In some embodiments, the at least one mineral oil includes greater than about 20 wt % alkanes with greater than 20 carbons, based on a total weight of the at least one mineral oil. Methods of making an unfired extruded body using the batch mixture are also disclosed.
Abstract:
Disclosed herein are green bodies comprising at least one ceramic-forming powder; at least one binder; and at least one cross-linked starch present in an amount of at least about 20% by weight as a super addition. Further disclosed herein is a method of making a porous ceramic body comprising mixing at least one ceramic-forming powder, at least one solvent such as water, at least one binder, and at least one cross-linked starch present in an amount of about 20% by weight as a super addition to form a batch composition; extruding the batch composition to form a green body; drying the green body; and firing the green body to form a porous ceramic body. Also disclosed herein are methods of screening a green body for making a porous ceramic body.
Abstract:
Disclosed herein are green bodies comprising at least one ceramic-forming powder; at least one binder; and at least one cross-linked starch present in an amount of at least about 20% by weight as a super addition. Further disclosed herein is a method of making a porous ceramic body comprising mixing at least one ceramic-forming powder, at least one solvent such as water, at least one binder, and at least one cross-linked starch present in an amount of about 20% by weight as a super addition to form a batch composition; extruding the batch composition to form a green body; drying the green body; and firing the green body to form a porous ceramic body. Also disclosed herein are methods of screening a green body for making a porous ceramic body.
Abstract:
A ceramic precursor batch composition comprising inorganic ceramic-forming ingredients, a binder, an aqueous solvent and a heteroatom polyol agent. The heteroatom polyol agent can be represented by X(R) where X is at least one of S, N, and P, and R is at least two of CH3, CH2CH2OH, CH2CH2CH2OH, CH2(CHOH)CH3, C(CH2OH)1-3, CH2OH, CH(CH2OH)CHOH, C(O)(CHOH)1-4CH2OH, and CH2CH2CH2OCH3. The presence of the heteroatom polyol agent provides a composition with a lower viscosity and/or a greater batch stiffening temperature (Tonset) allowing for increased rates of extrusion. Methods for producing a ceramic honeycomb body using this ceramic precursor batch composition are also provided.