Abstract:
A wireless distribution system (WDS) is configured for transmitting a downlink signal or for receiving an uplink signal. A computing device configured to serve as a client device to the WDS includes a memory; a multiple applications processor in communication with the memory and configured to execute one or more mobile applications; and a wireless service processor in communication with the multi applications processor for communicating via a corresponding wireless service with the WDS. The multi applications processor is configured to execute an instance of a data service to establish a connection with the WDS for a specified application process utilizing the wireless service to provide at least one datum on the WDS. In the method, an instance of a data service is executed to establish a connection with a WDS for a specified application process utilizing a wireless service to provide at least one datum on the WDS.
Abstract:
A wireless distribution system (WDS) is configured for transmitting a downlink signal or for receiving an uplink signal. A computing device configured to serve as a client device to the WDS includes a memory; a multiple applications processor in communication with the memory and configured to execute one or more mobile applications; and a wireless service processor in communication with the multi applications processor for communicating via a corresponding wireless service with the WDS. The multi applications processor is configured to execute an instance of a data service to establish a connection with the WDS for a specified application process utilizing the wireless service to provide at least one datum on the WDS. In the method, an instance of a data service is executed to establish a connection with a WDS for a specified application process utilizing a wireless service to provide at least one datum on the WDS.
Abstract:
Optimizing performance between a wireless distribution system (WDS) and a macro network(s). In this regard, a macro network optimization system is configured to detect a performance indicator(s) between a WDS and a macro network and optimize the performance of the macro network based on the detected performance indicator(s). The macro network optimization system analyzes a macro network performance report provided by the macro network and/or a WDS performance report provided by the WDS to detect the performance indicator(s) between the WDS and the macro network. The macro network optimization system reconfigures operations of one or more macro network elements to optimize performance between the WDS and the macro network based on the detected performance indicator(s). By detecting and optimizing performance between the WDS and the macro network, capacity, throughput, and/or coverage of the WDS and the macro network can be improved, thus providing better quality of experience (QoE).
Abstract:
A communications system is disclosed that includes at least one remote expansion unit (RXU) that is operatively coupled to at least one remote unit (RU). The at least one RU is configured to receive a first and a second downlink optical radio frequency (RF) communications signal. The at least one RU comprises at least one optical-to-electrical (O/E) converter configured to convert the first and second downlink optical RF communications signals to respective first and second downlink electrical RF communications signals. The at least one RXU is configured to receive the second downlink electrical RF communications signal from the at least one RU. The RU may comprise selection circuitry configured to identify which of the downlink electrical communications signals are sent to the RXU. The RXU may be configured to provide an uplink electrical RF communications signal received from a client device to the RU.
Abstract:
Components, systems, and methods for determining propagation delay of communications in distributed antenna systems are disclosed. The propagation delay of communications signals distributed in the distributed antenna systems is determined. If desired, the propagation delay(s) can be determined on a per remote antenna unit basis for the distributed antenna systems. The propagation delay(s) can provided by the distributed antenna systems to a network or other system to be taken into consideration for communications services or operations that are based on communications signal delay. As another non-limiting example, propagation delay can be determined and controlled for each remote antenna unit to uniquely distinguish the remote antenna units. In this manner, the location of a client device communicating with a remote antenna unit can be determined within the communication range of the remote antenna unit.
Abstract:
A system, and related methods and devices, is disclosed for increasing an output power of a frequency band in a distributed antenna system that includes at least one RXU module that is operatively coupled to at least one RAU module. A first group of the plurality of channels within a first frequency band may be allocated to the RAU module, and a second group of the plurality of the channels within the first frequency band may be allocated to the RXU module. The at least one RAU module may be configured to receive RF signals from the first group of the plurality of channels being used in the first frequency band, and the at least one RXU module may be configured to receive RF signals from the second group of the plurality of channels being used in the first frequency band. In this manner, the amount of composite power per channel is increased.
Abstract:
Distributed communications systems providing and supporting radio frequency (RF) communication services and digital data services, and related components and methods are disclosed. The RF communication services can be distributed over optical fiber to client devices, such as remote units for example. Power can also be distributed over electrical medium that is provided to distribute digital data services, if desired, to provide power to remote communications devices and/or client devices coupled to the remote communications devices for operation. In this manner, as an example, the same electrical medium used to transport digital data signals in the distributed antenna system can also be employed to provide power to the remote communications devices and/or client devices coupled to the remote communications devices. Power may be injected and switched from two or more power sources over selected electrical medium to distribute power for power-consuming components supporting RF communications services and digital data services.
Abstract:
A system, and related methods and devices, is disclosed for increasing an output power of a frequency band in a distributed antenna system that includes at least one RXU module that is operatively coupled to at least one RAU module. A first group of the plurality of channels within a first frequency band may be allocated to the RAU module, and a second group of the plurality of the channels within the first frequency band may be allocated to the RXU module. The at least one RAU module may be configured to receive RF signals from the first group of the plurality of channels being used in the first frequency band, and the at least one RXU module may be configured to receive RF signals from the second group of the plurality of channels being used in the first frequency band. In this manner, the amount of composite power per channel is increased.
Abstract:
Optimizing performance between a wireless distribution system (WDS) and a macro network(s). In this regard, a macro network optimization system is configured to detect a performance indicator(s) between a WDS and a macro network and optimize the performance of the macro network based on the detected performance indicator(s). The macro network optimization system analyzes a macro network performance report provided by the macro network and/or a WDS performance report provided by the WDS to detect the performance indicator(s) between the WDS and the macro network. The macro network optimization system reconfigures operations of one or more macro network elements to optimize performance between the WDS and the macro network based on the detected performance indicator(s). By detecting and optimizing performance between the WDS and the macro network, capacity, throughput, and/or coverage of the WDS and the macro network can be improved, thus providing better quality of experience (QoE).
Abstract:
Optimizing performance between a wireless distribution system (WDS) and a macro network(s). In this regard, a macro network optimization system is configured to detect a performance indicator(s) between a WDS and a macro network and optimize the performance of the macro network based on the detected performance indicator(s). The macro network optimization system analyzes a macro network performance report provided by the macro network and/or a WDS performance report provided by the WDS to detect the performance indicator(s) between the WDS and the macro network. The macro network optimization system reconfigures operations of one or more macro network elements to optimize performance between the WDS and the macro network based on the detected performance indicator(s). By detecting and optimizing performance between the WDS and the macro network, capacity, throughput, and/or coverage of the WDS and the macro network can be improved, thus providing better quality of experience (QoE).