Abstract:
A control system for a switched reluctance (SR) motor includes a Direct Current (DC) power source, and an inverter. The control system includes a user interface configured to enable an operator to specify a desired torque output. The control system further includes a controller which converts a DC current from the Alternating Current (AC) supplied to the SR motor by the inverter. The controller estimates an actual power output generated by the SR motor based on a DC voltage supplied by the DC power source to the inverter, and the converted DC current. The controller estimates an actual torque output based on the actual power output and a rotational speed of the SR motor. The controller compares the actual torque output and a desired torque output to calculate a torque error. The controller adjusts a torque output limit and the rotational speed of the SR motor.
Abstract:
A method for determining rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may include injecting a test pulse into one or more idle phases of the SR machine, determining a decoupled flux value based at least partially on a total flux value corresponding to the test pulse and a mutual flux value, and determining the rotor position based at least partially on the decoupled flux value.
Abstract:
A method of regulating a phase current of an electric motor is provided. The method may include selectively enabling one or more switches of each phase of the electric motor according to one of at least a soft chopping motoring routine and a soft chopping generating routine, monitoring the phase current relative to at least one limit of a hysteresis band and a switching period, and controlling the switches according to a hard chopping routine when the phase current does not reach the limit within the switching period.
Abstract:
A control system for a switched reluctance (SR) machine is disclosed. The SR machine may have a rotor and a stator. The control system may have a converter circuit operatively coupled to the stator and including a plurality of gates in selective communication with each phase of the stator, and a controller in communication with each of the stator and the converter circuit. The controller may be configured to command a fixed dwell of a theta-on angle and a theta-off angle and a varying current command to the plurality of gates when the SR machine is in a continuous conduction mode.
Abstract:
A control system for a generator of an electric drive is provided. The control system may include a converter circuit configured to communicate with one or more phases of a stator of the generator, and a controller in communication with the converter circuit and an engine associated with the electric drive. The controller may be configured to determine an operational state of the electric drive based on at least engine speed, and engage one of a map-lookup control scheme and a fixed-theta off control scheme for operating the generator based on the operational state of the electric drive.
Abstract:
A method of estimating an initial rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may comprise the steps of driving a phase current in each of a plurality of phases of the SR machine to a predefined limit, performing an integration of a common bus voltage associated with each phase, determining a flux value for each phase based on the integrations, and determining the initial rotor position based on the flux values.