摘要:
A quantum device includes a resonator and a tuning structure. The tuning structure is made a material such as a chalcogenide and is positioned to interact with the electromagnetic radiation in the resonator so that a resonant mode of the first resonator depends on a characteristic of the tuning structure. The resonator is optically coupled so that a transition between quantum states associated with a defect produces electromagnetic radiation in the resonator. The characteristic of the tuning structure is adjustable after fabrication of the resonator and the tuning structure.
摘要:
A process for entangling quantum states of respective quantum systems measures electromagnetic radiation emitted from a first system and from a second system. The two systems are exposed to excitation radiation having a probability per time of producing a photon, and an interference element is coupled to receive photons from the first and second systems. The process further includes measuring a time during which the first and second systems were exposed to the excitation radiation before a photon is detected on either output channel of the interference element and applying an electromagnetic pulse that causes a relative phase shift of a portion of a quantum state of the first and second systems. Parameters of the electromagnetic pulse are selected based on measurements of the electromagnetic radiation from the first and second systems and the time measured.
摘要:
Light-detection systems that do not destroy the light to be detected or change the propagation direction of the light are described. In one aspect, a light-detection system includes an optical element composed of a substrate with a planar surface and a polarization insensitive, high contrast, sub-wavelength grating composed of posts that extend from the planar surface. The posts and/or lattice arrangement of the posts are non-periodically varied to impart orbital angular momentum and at least one helical wavefront on the light transmitted through the optical element.
摘要:
This disclosure is directed to thermally controlled optical systems. In one aspect, an optical system includes a sub-wavelength grating having a planar geometry and a grating pattern associated with a particular shape of, and direction in which, a wavefront emerges from the grating, when the grating is illuminated by a beam of light. The system includes at least one heating element separately connected to a current source. The current source to inject a current into each heating element to heat a corresponding region of the grating and produce a desired change in the shape of, and/or direction in which, the wavefront emerges from the grating.
摘要:
Light-detection systems that do not destroy the light to be detected or change the propagation direction of the light are described. In one aspect, a light-detection system includes an optical element composed of a substrate with a planar surface and a polarization insensitive, high contrast, sub-wavelength grating composed of posts that extend from the planar surface. The posts and/or lattice arrangement of the posts are non-periodically varied to impart orbital angular momentum and at least one helical wavefront on the light transmitted through the optical element.
摘要:
An optical resonator, a photonic system and a method of optical resonance employ optical waveguide segments connected together with total internal reflection (TIR) mirrors to form a closed loop. The optical resonator includes the optical waveguide segments, an intracavity active element coupled to a designated one of the optical waveguide segments, the TIR mirrors and a photo-tunneling input/output (I/O) port. The photo-tunneling I/O port includes one of the TIR mirrors. The method includes propagating and reflecting the optical signal, or a portion thereof, in the optical resonator, transmitting a portion of the optical signal through the I/O port, and influencing the optical signal. The photonic system includes the optical resonator with optical gain and a source of an optical signal.
摘要:
Various embodiments of the present invention are directed to photonically-coupled quantum dot systems. In one embodiment of the present invention, a photonic device comprises a top layer, a bottom layer, and a transmission layer positioned between the top layer and the bottom layer and configured to transmit electromagnetic radiation. The photonic devices may also include at least one quantum system embedded within the transmission layer. The at least one quantum system can be positioned to receive electromagnetic radiation and configured to emit electromagnetic radiation that propagates within the transmission layer.
摘要:
An optical resonator, a photonic system and a method of optical resonance employ optical waveguide segments connected together with total internal reflection (TIR) mirrors to form a closed loop. The optical resonator includes the optical waveguide segments, an intracavity active element coupled to a designated one of the optical waveguide segments, the TIR mirrors and a photo-tunneling input/output (I/O) port. The photo-tunneling I/O port includes one of the TIR mirrors. The method includes propagating and reflecting the optical signal, or a portion thereof, in the optical resonator, transmitting a portion of the optical signal through the I/O port, and influencing the optical signal. The photonic system includes the optical resonator with optical gain and a source of an optical signal.
摘要:
An avalanche photodiode with a defect-assisted silicon absorption region. An example includes a substrate; a layer of silicon on the substrate, the layer of silicon including a positively-doped region, a negatively-doped region, and an absorption region between the positively-doped and negatively-doped regions, the absorption region including defects in its crystal structure; and contacts in electrical communication with the positively-doped and negatively-doped regions to receive a bias potential.
摘要:
An apparatus for performing surface enhanced Raman spectroscopy includes an optical waveguide, a plurality of flexible nano-structures, wherein the plurality of nano-structures have respective free ends positioned within an evanescent field to be generated by light propagated through the optical waveguide, wherein the plurality of nano-structures are movable from a first position and a second position, wherein in the first position, the free ends of the plurality of nano-structures are substantially spaced from each other and in the second position, the free ends of a plurality of the nano-structures are substantially in contact with each other.