摘要:
The following steps are used to form a split gate electrode MOS FET device. Form a tunnel oxide layer over a semiconductor substrate. Over the tunnel oxide layer, form a doped first polysilicon layer with a top surface upon which a native oxide forms. Then as an option, remove the native oxide layer. On the top surface of the first polysilicon layer, form a silicon nitride layer and etch the silicon nitride layer to form it into a cell-defining layer. Form a polysilicon oxide dielectric cap over the top surface of the first polysilicon layer. Aside from the polysilicon oxide cap, etch the first polysilicon layer and the tunnel oxide layer to form a floating gate electrode stack in the pattern of the masking cap forming a sharp peak on the periphery of the floating gate electrode. Form spacers on the sidewalls of the gate electrode stack. Then form blanket inter-polysilicon dielectric and blanket control gate layers covering exposed portions of the substrate and covering the stack. Pattern the inter-polysilicon dielectric and control gate layers into a split gate electrode pair. Form a source region self-aligned with the floating gate electrode stack; perform a tungsten silicide anneal; and form a drain region self-aligned with the control gate electrodes.
摘要:
A novel method of forming a first polysilicon gate tip (poly tip) for enhanced F-N tunneling in split-gate flash memory cells is disclosed. The poly tip is further enhanced by forming a notch in two different ways in a nitride layer overlying the first polysilicon layer. In one embodiment, the notch is formed after wet oxidizing the sidewalls of the underlying first polysilicon layer, thus at the same time forming a poly tip which is exposed upwardly but covered by polyoxide on the side. In another embodiment, the notch is formed prior to the oxidation of the exposed regions of the first polysilicon layer, such as the sidewalls, so that during the subsequent oxidation, not only the sidewalls but also the exposed portions of the polysilicon in the notch region are also oxidized. Because the oxidation of the polysilicon advances in a non-uniform manner with very little at the polysilicon/nitride interface and to a larger rate elsewhere, a thin and robust polysilicon tip is formed which is at the same time covered by oval-shaped poly-oxide on all sides. A method of forming a self-aligned source (SAS) line is also disclosed in conjunction with the forming of the polytip. Hence the combination of an enhanced poly tip with a self-aligned source provides a faster split-gate flash memory device.
摘要:
A method is provided for forming a split-gate flash memory cell having a sharp poly tip which substantially improves the erase speed of the cell. The poly tip is formed without the need for conventional oxidation of the polysilicon floating gate. Instead, the polysilicon layer is etched using a high pressure recipe thereby forming a recess with a sloped profile into the polysilicon layer. The recess is filled with a top-oxide, which in turn serves as a hard mask in etching those portions of the polysilicon year not protected by the top-oxide layer. The edge of the polysilicon layer formed by the sloping walls of the recess forms the sharp poly tip of this invention. The sharp tip does not experience the damage caused by conventional poly oxidation processes and, therefore, provides enhanced erase speed for the split-gate flash memory cell. The invention is also directed to a semiconductor device fabricated by the disclosed method.
摘要:
In this invention bit lines are ion implanted into a semiconductor substrate in columns beside floating gates of an array of flash memory cells. A control gate overlays each row floating gates and operates as a word lines for the rows of flash memory cells. Each bit line serves a dual purpose of providing a drain for one cell and a source for the adjacent cell. The flash memory cells are programmed, erased and read depending upon the voltages applied to the buried bit lines and the word line structured as a control gate that extends the length of each row. By implanting the bit lines into the semiconductor substrate the flash memory cell can be made smaller improving the density of the flash memory.
摘要:
A method of forming split gate electrode MOSFET devices comprises the following steps. Form a tunnel oxide layer over a semiconductor substrate. Form a floating gate electrode layer over the tunnel oxide layer. Form a masking cap over the floating gate electrode layer. Pattern a gate electrode stack formed by the tunnel oxide layer and the floating gate electrode layer in the pattern of the masking cap. Form intermetal dielectric and control gate layers over the substrate covering the stack and the source regions and the drain regions. Pattern the intermetal dielectric and control gate layers into adjacent mirror image split gate electrode pairs. Pattern a source line slot in the center of the gate electrode stack down to the substrate. Form source regions through the source line slot. Form drain regions self-aligned with the split gate electrodes and the gate electrode stack.
摘要:
A split gate P-channel flash memory cell and method of forming a split gate P-channel flash memory cell which avoids of high erasing voltage, reverse tunneling during programming, drain disturb and over erase problems, and permits shrinking the cell dimensions. The control gate has a concave top surface which intersects with the sidewalls to form a sharp edge. The cell is programmed by charging the floating gate with electrons by means of hot electron injection from the channel into the floating gate. The cell is erased by discharging the excess electrons from the floating gate into the control gate using Fowler-Nordheim tunneling. The sharp edge at the intersection of the concave top surface and the sidewalls of the floating gate produces a high electric field between the control gate and the floating gate to accomplish the Fowler-Nordheim tunneling with only moderate voltage differences between the floating gate and control gate. The P-channel flash memory cell has a higher impact ionization rage for creating hot electrons so that the distance between the source and drain junctions and the length of the floating gate can be kept small thereby permitting the dimensions of the flash memory cell to be shrunk.
摘要:
A method is provided for forming a split-gate flash memory cell having reduced size, increased capacitive coupling and improved data retention capability. A split-gate cell is also provided with appropriate gate oxide thicknesses between the substrate and the floating gate and between the floating gate and the control gate along with an extra thin nitride layer formed judiciously over the primary gate oxide layer in order to overcome the problems of low data retention capacity of the floating gate and the reduced capacitive coupling between the floating gate and the source of prior art.
摘要:
A method for forming a field oxide isolation regions of a memory array is described. The field isolation regions comprise a rectangular array of oxide islands. The oxide islands are formed by a two mask process wherein the first mask is a LOCOS hardmask which defines an array of parallel field oxide stripes. The field oxide stripes are thermally grown by a LOCOS oxidation process. A second mask, which has an array of parallel stripes perpendicular to the field oxide stripes is then patterned over the wafer. The stripes of the second mask expose a plurality of narrow sections of the field oxide stripes which are then etched by a directional plasma etch having a high selectivity of silicon oxide over silicon. The anisotropic etch segments each of the longer oxide stripes into a string of islands space apart by a narrow gap through which a robust common source line passes unencumbered by birdsbeak oxide. The edges of the field oxide at the gap have vertical walls and square corners which afford improved spacing of components in the vicinity of the gap. The method eliminates the need for a mask bias to accommodate corner rounding and birdsbeak oxide encroachment which occurs if the islands are defined by a single mask process.
摘要:
A PIP (Poly-Interpoly-Poly) capacitor with high capacitance is provided in a split-gate flash memory cell. A method is also disclosed to form the same PIP capacitor where the bottom and top plates of the capacitor are formed simultaneously with the floating gate and control gate, respectively, of the split-gate flash memory cell. Furthermore, the thin interpoly oxide of the cell, rather than the thick poly-oxide over the floating gate is used as the insulator between the plates of the capacitor. The resulting capacitor yields high storage capacity through high capacitance per unit area.
摘要:
A split gate electrode MOS FET device includes a tunnel oxide layer formed over a semiconductor substrate. Over the tunnel oxide layer, a doped first polysilicon layer is formed with a top surface. A native oxide which forms over the doped first polysilicon layer may have been removed as an option. On the top surface of the first polysilicon layer, a silicon nitride layer was etched to form it into a cell-defining layer. A polysilicon oxide dielectric cap was formed over the top surface of the first polysilicon layer. Aside from the polysilicon oxide cap, the first polysilicon layer and the tunnel oxide layer were formed into a floating gate electrode stack in the pattern of the masking cap forming a sharp peak on the periphery of the floating gate electrode. Spacers are formed on the sidewalls of the gate electrode stack. Blanket inter-polysilicon dielectric and blanket control gate layers cover exposed portions of the substrate and the stack. The inter-polysilicon dielectric and control gate layers are patterned into a split gate electrode pair. A source region is self-aligned with the floating gate electrode stack. A tungsten silicide anneal was performed; and a drain region self-aligned with the control gate electrodes was formed.