Abstract:
A method for a base station to transmit data, the data to be relayed by a relay station to user equipment, the method including: encoding, based on an identification of the relay station or an identification of the user equipment, control information that indicates resource allocation for the relay station; and transmitting the control information to the relay station.
Abstract:
A method for reporting uplink control information and a wireless communication device using the same are disclosed. The wireless communication device supports multiple component carriers (CC), and the proposed method includes following steps. When a base station requests the wireless communication device to transmit aperiodic channel state information (CSI) report of one or more downlink CC to the base station, but the CSI of the downlink CCs may be invalid, following steps are executed on the downlink CC. Full payloads of channel quality indicator (CQI)/precoding matrix indicator (PMI) corresponding to a plurality of selectable RI values of the downlink CC are respectively calculated. Additionally, an RI value of the downlink CC is selected according to the full payloads of the CQI/PMI corresponding to the selectable RI values.
Abstract:
A method for partitioning a soft buffer in a time-division duplex system and an apparatus using the same are disclosed. The method includes the following steps. A total number of soft channel bits, a maximum number of transport blocks transmittable to a user equipment (UE) in a transmission time interval (TTI), a maximum number of downlink (DL) hybrid automatic retransmit request (HARQ) processes, and a configured maximum number of HARQ processes are determined. A partition size of the soft buffer is selected according at least to the total number of soft channel bits, the maximum number of transport blocks transmittable to the UE in the TTI, the maximum number of DL HARQ processes, and the preconfigured maximum number of HARQ processes.
Abstract:
A tunneling magnetoresistance sensor including a substrate, an insulating layer, a tunneling magnetoresistance component and an electrode array is provided. The insulating layer is disposed on the substrate. The tunneling magnetoresistance component is embedded in the insulating layer. The electrode array is formed in a single metal layer and disposed in the insulating layer either below or above the TMR component. The electrode array includes a number of separate electrodes. The electrodes are electrically connected to the tunneling magnetoresistance component to form a current-in-plane tunneling conduction mode. The tunneling magnetoresistance sensor in this configuration can be manufactured with a reduced cost and maintain the high performance at the same time.
Abstract:
A spin-valve magnetoresistance structure includes a first magnetoresistance layer having a fixed first magnetization direction, a second magnetoresistance layer disposed on a side of the first magnetoresistance layer and having a variable second magnetization direction, and a spacer disposed between the first magnetoresistance layer and the second magnetoresistance layer. The second magnetization direction is at an angle in a range from 30 to 60 degrees or from 120 to 150 degrees to the first magnetization direction when the intensity of an applied external magnetic field is zero. The second magnetization direction varies with the external magnetic field thereby changing an electrical resistance of the spin-valve magnetoresistance structure. A spin-valve magnetoresistance sensor based on the spin-valve magnetoresistance structure is also provided.
Abstract:
A fabricating method of a magnetoresistance sensor is provided with cost effective and process flexibility features. Firstly, a substrate is provided. Then, at least one magnetoresistance structure and at least one bonding pad are formed over the substrate, wherein the bonding pad is electrically connected with the magnetoresistance structure. Then, a passivation layer is formed over the magnetoresistance structure and the bonding pad. Then, a magnetic shielding and concentrator structure is formed over the passivation layer at a location corresponding to the magnetoresistance structure. Finally, bonding pad openings is formed on the passivation layer by patterned polyimide, thereby exposing the bonding pad. After bonding pad was opened, the patterned polyimide can be removed or retained as an additional protection layer.
Abstract:
An apparatus of a magnetoresistance sensor consisting of a substrate, a conductive unit on the substrate, and a magnetoresistance structure on the conductive unit is provided. The conductive unit includes a first surface and a second surface opposite to each other, and the first surface faces the substrate. The magnetoresistance structure is formed on the second surface of the conductive unit and is electrically connected to the conductive unit. The magnetoresistance sensor has high performance and reliability. A magnetoresistance sensor fabricating method based on this apparatus is also provided.
Abstract:
An apparatus for data processing in a multi-channel communication system is provided. The apparatus includes an encoder configured to encode a number of bits for transmission via channels in the multi-channel communication system into coded bits and split the coded bits into a number of first sets of bits at a first ratio, a number of first rate units coupled to the encoder, each of the first rate units being configured to adjust one set of the first sets of bits in size at at least one rate, and a controller configured to assign the first ratio to the encoder and the at least one rate to each of the first rate units based on conditions of the channels.
Abstract:
UE-specific search spaces (UE-SS) for a carrier-aggregated communication system are introduced to decrease the number of blind decoding attempts, decrease downlink control information (DCI) blocking probability, and maintain good blind decoding performance. In the proposed control channel allocation method, the control channel searching method and the communication apparatus thereof, the UE-specific search spaces are extended except control channel element (CCE) aggregation level one. Further, a new CCE aggregation level is created in the UE-specific search spaces. The sum of the number of control channel candidates for all aggregation levels is bounded by the maximum number of PDCCH candidates. In addition, uplink MIMO grant command is just allocated in a pre-configured component carrier or a set of pre-configured component carriers, but uplink MIMO grant command is not allocated in the remaining component carriers.
Abstract:
A pulse width modulating (PWM) circuit includes an activating module and a pulse generating module connected to the activating module. The activating module includes a current resource and a compensation unit. The current source generates an activating current, and the compensating unit detects the activating current and compensates the activating current if the activating current changes. The activating current is input to the pulse generating module to generate pulse voltages output by the pulse generating module.