Abstract:
A display panel having a display region and a non-display region is provided. The display panel includes a plurality of pixel structures in the display region, and each pixel structure includes a scan line, a data line, a first active device, a pixel electrode, a first insulating layer, a capacitor electrode, and a second insulating layer. The first active device includes a first gate, a first channel, a first source, and a first drain. The second insulating layer covers the first insulating layer and the capacitor electrode and is located between the capacitor electrode and the first drain. At least one driving circuit is disposed in the non-display region and includes at least one second active device. Hence, a relatively thin insulating layer can be disposed between the capacitor electrode and the drain to reduce the area of the capacitor region and to achieve a desired aperture ratio.
Abstract:
A virtual machine monitoring method used in a virtual machine monitoring system is provided. The virtual machine monitoring method includes retrieving a hypercall transmitted from one of a plurality of virtual machines to a hypervisor of a virtual machine monitoring system, wherein the hypercall is used for establishing a channel between a source virtual machine and a target virtual machine. A central control virtual machine ID information in the hypervisor is retrieved. A type of the channel established by the hypercall is determined according to the central control virtual machine ID information and channel-establishing information corresponding to the hypercall. When the channel is a private channel that is not related to a central control virtual machine of the virtual machines, a security module is used to monitor the private channel.
Abstract:
This invention in one aspect relates to a pixel structure. In one embodiment, the pixel structure includes a scan line formed on a substrate and a data line formed over the substrate defining a pixel area, a switch formed inside the pixel area on the substrate, a shielding electrode formed over the switch, a plane organic layer formed over the date line and the pixel area and having no overlapping with the shielding electrode, and a pixel electrode having a first portion and a second portion extending from the first portion, and formed over the shielding electrode and the plane organic layer in the pixel area, wherein the first portion is overlapped with the shielding electrode so as to define a storage capacitor therebetween, and the second portion overlays the plane organic layer and has no overlapping with the data line.
Abstract:
A pixel structure includes a first electrode on a substrate, a first insulation layer covering the first electrode, a gate located on the first insulation layer, a second electrode located on the first insulation layer above the first electrode, a second insulation layer covering the gate and the second electrode, a semiconductor layer located on the second insulation layer above the gate, a source and a drain that are located on the semiconductor layer, a third electrode, a third insulation layer, and a pixel electrode. The third electrode is located on the second insulation layer above the second electrode and electrically connected to the first electrode. The third insulation layer covers the source, the drain, and the third electrode. The pixel electrode is located on the third insulation layer and electrically connected to the drain.
Abstract:
A storage device for a tablet personal computer is provided. The storage device includes a base and an upper cover for fixing the tablet personal computer. The base includes a foldable structure. When the foldable structure is folded and stacked on a side of the base, a receiving space for fixing a keyboard device is defined by the base and the foldable structure. In such way, the tablet personal computer and the keyboard device can be simultaneously stored within the storage device.
Abstract:
An active device, a pixel structure, and a display panel are provided. The pixel structure includes a scan line, a data line, an active device, a first insulating layer, a pixel electrode, a capacitor electrode, and a second insulating layer. The active device includes a gate, a channel, a source, and a drain. The gate is electrically connected to the scan line. The source is electrically connected to the data line. The first insulating layer is disposed between the gate and the channel. The pixel electrode is electrically connected to the drain. The capacitor electrode is located on the first insulating layer. The second insulating layer is located between the capacitor electrode and the drain.
Abstract:
The present invention relates to a pattern forming ink composition, and more particularly, to a pattern forming ink composition having high yellowing resistance, wherein the pattern forming ink composition including an acrylate-based resin having a ring structure (A), a compound having at least one ethylenically unsaturated double bond (B) and a photoinitiator (C). The pattern forming ink is printed as a reflection pattern on a light guide plate to scatter and reflect the light incident to the reflection pattern towards a light emitting surface of the light guide plate.
Abstract:
An echo cancellation circuit for an RFID reader and the method thereof are provided. The echo cancellation circuit includes a gain calculator, a gain adjustment circuit, and a subtraction circuit. The gain calculator provides a complex gain value according to a carrier signal and a received signal through an adaptive algorithm. The gain adjustment circuit is coupled to the gain calculator. The gain adjustment circuit multiplies the carrier signal by the complex gain value, and outputs the result of the multiplication. The subtraction circuit is coupled to the gain adjustment circuit. The subtraction circuit subtracts the output of the gain adjustment circuit from the received signal, and then provides the result of the subtraction as the output signal of the echo cancellation circuit.
Abstract:
A method and a system for cleaning malicious software (malware), a computer program product, and a storage medium are provided. A relation graph is established to associate processes in an operating system and related elements. A node marking action is performed on the relation graph when a predetermined condition is satisfied. The node corresponding to a malicious process and its related nodes are marked with a first label. The nodes of other normal processes and their related nodes are marked with a second label. Then, those nodes marked with both the first label and the second label are screened, so that each of the nodes is marked with only the first label or the second label. Finally, the processes and elements corresponding to the nodes marked with the first label are removed.