摘要:
Disclosed is a synthetic silica glass optical material having high resistance to optical damage by ultraviolet radiation in the ultraviolet wavelength range, particularly in the wavelength less than about 250 nm and particularly, exhibiting a low laser induced wavefront distortion; specifically a laser induced wavefront distortion, measured at 633 nm, of between about −1.0 and 1.0 nm/cm when subjected to 10 billion pulses of a laser operating at approximately 193 nm and at a fluence of approximately 70 μJ/cm2. The synthetic silica glass optical material of the present invention comprises OH concentration levels of less than about 600 ppm, preferably less than 200 ppm, and H2 concentration levels less than about 5.0×1017 molecules/cm3′ and preferably less than about 2.0×1017 molecules/cm3.
摘要翻译:公开了一种合成石英玻璃光学材料,其特征在于波长小于约250nm,特别是具有低激光诱导波前失真的紫外线波长范围内具有高抗紫外线辐射的光学损伤, 具体地,在经受约193nm处的激光器操作的100亿脉冲和大约70μJ/ cm 2的能量密度下,在633nm处测量的激光感应波前失真在约-1.0和1.0nm / cm之间。 本发明的合成石英玻璃光学材料包含小于约600ppm,优选小于200ppm的OH浓度水平和小于约5.0×10 17分子/ cm 3',优选小于约2.0×10 17分子/ cm 3的H 2浓度水平 。
摘要:
Disclosed are compositions for applying to honeycomb bodies. The compositions can be used as plugging mixtures for forming a ceramic wall flow filter. Alternatively, the compositions can be used to form skin coatings on exterior portions of a honeycomb body. The disclosed compositions include an inorganic powder batch composition, an organic binder, a liquid vehicle, and a rheology modifier. The compositions exhibit improved rheological properties, including an increased yield strength and reduced viscosity under shear, which, among various embodiments, can enable the manufacture of sintered phase end plugs having reduced levels of dimple and pinhole formations in the final dried and fired end plugs as well as end plugs having relatively uniform and desired depths. Also disclosed are methods for forming end plugged ceramic wall flow filters from the plugging mixtures disclosed herein.
摘要:
An optical fiber comprising: a glass core extending from a centerline to a radius R1; a glass cladding surrounding and in contact with the core, the cladding comprising:a first annular region extending from R1 to a radius R2, the first annular region comprising a radial width, W2=R2−R1, a second annular region extending from R2 to a radius R3, the second annular region comprising a radial width, W3=R3−R2, and a third annular region extending from R3 to an outermost glass radius R4; wherein (i) the core comprises a maximum relative refractive index, Δ1MAX, relative to the third annular region; (ii) wherein the first annular region comprises a radial width W2; and (iii) the second annular region comprises a minimum relative refractive index, Δ3MIN, relative to the third annular region wherein Δ1MAX>Δ2MAX>Δ3MIN, and Δ2MIN>Δ3MIN; and the core and the cladding provide a fiber with cable cutoff less than 1500 nm, dispersion at 1550 nm less than 12 ps/nm/km, effective area at 1550 nm greater than 60 μm2, and preferably greater than 70 μm2. The second annular cladding region may contain a plurality of randomly dispersed holes.
摘要:
An optical fiber according to an embodiment of the present invention comprises: a glass core extending from a centerline to a radius R1 wherein R1 is greater than about 5 μm; a glass cladding surrounding and in contact with the core, the cladding comprising: (i) a first annular region extending from the radius R1 to a radius R2, the first annular region comprising a radial width, W2=R2−R1, (ii) a second annular region extending from the radius R2 to a radius R3, and comprising a radial width, W3=R3−R2, and (iii) a third annular region surrounding the second annular region and extending from the radius R3 to an outermost glass radius R4; wherein the core comprises a maximum relative refractive index, Δ1MAX, relative to the third annular region, and wherein Δ1MAX is greater than about 0.1% and less than about 0.3%; the first annular region has a refractive index delta Δ2(r) is less than about 0.025%; wherein the second annular region comprises a minimum relative refractive index, Δ3MIN, relative to the third annular region;wherein Δ1MAX>Δ2MAX>Δ3MIN, and Δ2MIN>Δ3MIN
摘要:
Optical fiber having a coating surrounding and in direct contact with the silica based cladding region of the fiber, the coating having a Young's modulus of elasticity greater than 30 MPa. The optical fiber has low bend losses, especially low microbend induced losses. The optical fiber has a core surrounded by a cladding, and the cladding has a ring portion that includes holes or doped silica or both.
摘要:
Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
摘要翻译:蛋白质结合水平小于约50-80ng / cm 2的疏水性聚合物表面通过以下方式实现:(1)施加由溶剂和具有HLB的非离子表面活性剂组成的涂布溶液 数量小于5的表面; 和(2)干燥表面以除去溶剂,从而使表面活性剂与疏水性聚合物直接接触。 已经发现低HLB值和干燥步骤的组合产生低结合表面,其可以经受多次用水和/或蛋白质溶液洗涤。 或者,低结合表面可以通过将非离子表面活性剂施加到与熔融聚合物接触的模具表面并将聚合物形成所需形状,例如多孔板,移液管尖端等来制备。 此外,低粘合表面可以通过将HLB数小于或等于10的非可溶性非离子表面活性剂在模制制品之前加入到聚合物共混物中来制备。
摘要:
Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm.sup.2 are achieved by: (1) applying to a hydrophobic polymer surface a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 and at least one hydrophilic element which can extend into an aqueous solution; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
摘要翻译:蛋白质结合水平小于约50-80ng / cm 2的疏水性聚合物表面通过以下方式实现:(1)将疏水性聚合物表面施用由HLB值少的溶剂和非离子表面活性剂组成的涂布溶液 可以延伸至水溶液中的至少一种亲水性元素; 和(2)干燥表面以除去溶剂,从而使表面活性剂与疏水性聚合物直接接触。 已经发现低HLB值和干燥步骤的组合产生低结合表面,其可以经受多次用水和/或蛋白质溶液洗涤。 或者,低结合表面可以通过将非离子表面活性剂施加到与熔融聚合物接触的模具表面并将聚合物形成期望的形状,例如多孔板,移液管尖端等来制备。 此外,低粘合表面可以通过将HLB数小于或等于10的非可溶性非离子表面活性剂在模制制品之前加入到聚合物共混物中来制备。
摘要:
An optical fiber having both low macrobend loss and low microbend loss. The fiber has a first inner cladding region having an outer radius r2>8 microns and refractive index Δ2 and a second outer cladding region surrounding the inner cladding region having refractive index Δ4, wherein Δ1>Δ4>Δ2. The difference between Δ4 and Δ2 is greater than 0.002 percent. The fiber exhibits a 22 m cable cutoff less than or equal to 1260 nm, and r1/r2 is greater or equal to 0.25.
摘要:
A multimode optical fiber includes a graded index glass core having a diameter in the range of 41 microns to 80 microns, a graded index having an alpha less than 2.04 and a maximum relative refractive index in the range between 0.6% and 1.8%. The cladding includes a depressed-index annular portion. The fiber has an overfilled bandwidth greater than 2.5 GHz-km at 1310 nm.
摘要:
A method of preparing an optical preform includes the steps of: a) etching an optical preform to remove a portion of an oxide material deposited on the preform by using a gas comprising an etchant gas containing fluorine at a sufficient temperature and gas concentration to create a redeposited germanium containing compounds contamination such as GeOx in the remaining oxide material; and b) cleaning the etched preform using a cleaning gas containing at least one halogen gas at a sufficient temperature and gas concentration to remove the redeposited germanium containing compound contamination without any substantial further contamination of the remaining deposited oxide material. Preferably the halogen is either chlorine or bromine.