摘要:
Disclosed embodiments include a movement monitoring apparatus comprising a wireless synchronization scheme. Depending on the particular embodiment such wireless synchronization scheme is a master synchronization scheme or a mesh synchronization scheme. Additionally, in a particular embodiment, the movement monitor further comprises a robust wireless data transfer data controller. The disclosure includes a description of the complete system, namely, the wireless synchronized movement monitors with robust data transfer capabilities, the docking station, the access point, and the computer-implemented analysis system.
摘要:
Disclosed embodiments include a movement monitoring apparatus comprising a wireless synchronization scheme. Depending on the particular embodiment such wireless synchronization scheme is a master synchronization scheme or a mesh synchronization scheme. Additionally, in a particular embodiment, the movement monitor further comprises a robust wireless data transfer data controller. The disclosure includes a description of the complete system, namely, the wireless synchronized movement monitors with robust data transfer capabilities, the docking station, the access point, and the computer-implemented analysis system.
摘要:
A lightweight portable probe or transducer containing a transmissive or reflective electro-optical emitter and receptor in the infrared spectrum is fitted on a subject's finger or toe. Associated electronics energize and monitor the probe, detect cardio-rhythmic fluctuations therefrom, and process digital data over a prescribed window to produce a non-invasive, qualitative or quantitative measure of the subject's circulation. In accordance with one embodiment of the invention, a simple tri-color LED array is used to indicate the subject's circulation as being normal, reduced, or borderline.
摘要:
Disclosed embodiments relate to methods, apparatuses, and systems for characterizing gait. Specifically, disclosed embodiments are related methods, apparatuses, and systems for characterizing gait with wearable and wirelessly synchronized inertial measurement units. These include a method for gait characterization that comprises (a) detecting zero-velocity periods using two or more wearable and wirelessly synchronized movement monitoring devices including a triaxial accelerometer and a triaxial gyroscope and (b) calculating temporal measures of gait during walking by estimating the change in position and orientation during each step.
摘要:
Disclosed embodiments of the invention include a method, system, and apparatus to monitor cardiovascular signals such as arterial blood pressure (ABP), pulse oximetry (POX), and intracranial pressure (ICP).The system can be used to calculate and monitor useful clinical information such as heart rate, respiratory rate, pulse pressure variation (PPV), harmonic phases, pulse morphology, and for artifact removal. The method uses a statistical state-space model of cardiovascular signals and a generalized Kalman filter (EKF) to simultaneously estimate and track the cardiovascular parameters of interest such as the cardiac fundamental frequency and higher harmonics, respiratory fundamental frequency and higher harmonics, cardiac component harmonic amplitudes and phases, respiratory component harmonic amplitudes and phases, and PPV.
摘要:
Disclosed embodiments include a movement monitoring system and apparatus for objective assessment of movement disorders of a subject, comprising (a) one or more movement monitors, and (b) a computer-implemented analysis system comprising one or more protocols and associated data analysis methods to objectively quantify movement disorders based on movement data acquired by the movement monitors. According to one embodiment, the movement monitors are robust wireless synchronized movement monitors and the protocols include one or more tests for assessment of neural control of balance.
摘要:
Methods and apparatus for determining a cardiac parameter from cardiovascular pressure signals including arterial blood pressure (ABP) and the photoplethysmographic signal to quantify the degree of amplitude modulation due to respiration and predict fluid responsiveness are disclosed. Disclosed embodiments include a method for assessing fluid responsiveness implemented in a digital computer with one or more processors comprising: (a) measuring a cardiovascular signal, and (b) computing a dynamic index predictive of fluid responsiveness from said cardiovascular signal using a nonlinear state space estimator. According to one particular embodiment, and without limitation, the nonlinear state space estimator is based on a model for cardiovascular signals such as arterial blood pressure or plethysmogram signals, and employs a marginalized particle filter to estimate a dynamic index predictive of fluid responsiveness that is substantially equivalent to a variation in pulse pressure of said cardiovascular signal.
摘要:
A lightweight portable probe or transducer containing a transmissive or reflective electro-optical emitter and receptor in the infrared spectrum is fitted on a subject's finger or toe. Associated electronics energize and monitor the probe, detect cardio-rhythmic fluctuations therefrom, and process digital data over a prescribed window to produce a non-invasive, qualitative or quantitative measure of the subject's circulation. In accordance with one embodiment of the invention, a simple tri-color LED array is used to indicate the subject's circulation as being normal, reduced, or borderline.