摘要:
Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS) are disclosed. For example, a method of measuring a sample by X-ray reflectance scatterometry involves impinging an incident X-ray beam on a sample having a periodic structure to generate a scattered X-ray beam, the incident X-ray beam simultaneously providing a plurality of incident angles and a plurality of azimuthal angles. The method also involves collecting at least a portion of the scattered X-ray beam.
摘要:
Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS) are disclosed. For example, a method of measuring a sample by X-ray reflectance scatterometry involves impinging an incident X-ray beam on a sample having a periodic structure to generate a scattered X-ray beam, the incident X-ray beam simultaneously providing a plurality of incident angles and a plurality of azimuthal angles. The method also involves collecting at least a portion of the scattered X-ray beam.
摘要:
Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS) are disclosed. For example, a method of measuring a sample by X-ray reflectance scatterometry involves impinging an incident X-ray beam on a sample having a periodic structure to generate a scattered X-ray beam, the incident X-ray beam simultaneously providing a plurality of incident angles and a plurality of azimuthal angles. The method also involves collecting at least a portion of the scattered X-ray beam.
摘要:
Methods and systems for fabricating platelets of a monochromator for X-ray photoelectron spectroscopy (XPS) are disclosed. For example, a method of fabricating a platelet of a monochromator for X-ray photoelectron spectroscopy involves placing a crystal on a stage of an X-ray measuring apparatus, the crystal having a top surface. The method also involves measuring, by X-ray reflection, an orientation of a crystal plane of the crystal, the crystal plane beneath the top surface of the crystal and having a primary axis. The method also involves measuring a surface angle of the top surface of the crystal by measuring a light beam reflected from the top surface of the crystal.
摘要:
Systems and methods for characterizing films by X-ray photoelectron spectroscopy (XPS) are disclosed. For example, a system for characterizing a film may include an X-ray source for generating an X-ray beam having an energy below the k-edge of silicon. A sample holder may be included for positioning a sample in a pathway of the X-ray beam. A first detector may be included for collecting an XPS signal generated by bombarding the sample with the X-ray beam. A second detector may be included for collecting an X-ray fluorescence (XRF) signal generated by bombarding the sample with the X-ray beam. Monitoring/estimation of the primary X-ray flux at the analysis site may be provided by X-ray flux detectors near and at the analysis site. Both XRF and XPS signals may be normalized to the (estimated) primary X-ray flux to enable film thickness or dose measurement without the need to employ signal intensity ratios.
摘要:
Methods and systems for fabricating platelets of a monochromator for X-ray photoelectron spectroscopy (XPS) are disclosed. For example, a method of fabricating a platelet of a monochromator for X-ray photoelectron spectroscopy involves placing a crystal on a stage of an X-ray measuring apparatus, the crystal having a top surface. The method also involves measuring, by X-ray reflection, an orientation of a crystal plane of the crystal, the crystal plane beneath the top surface of the crystal and having a primary axis. The method also involves measuring a surface angle of the top surface of the crystal by measuring a light beam reflected from the top surface of the crystal.
摘要:
The subject invention relates to a broadband optical metrology system that segregates the broadband radiation into multiple sub-bands to improve overall performance. Each sub-band includes only a fraction of the original bandwidth. The optical path—the light path that connects the illuminator, the sample and the detector—of each sub-band includes a unique sub-band optical system designed to optimize the performance over the spectral range spanned by the sub-band radiation. All of the sub-band optical systems are arranged to provide small-spot illumination at the same measurement position. Optional purging of the individual sub-band optical paths further improves performance.