Abstract:
A method for generating or reconstruction of three-dimensional (3D) images corresponding to a structure of interest (60) including: acquiring a plurality of image projections corresponding to a structure of interest (60); applying a shape model (66) at a selected 3D seed point (64); and adapting the shape model (66) to represent the structure of interest (60), yielding an adapted shape model. A system for generation and reconstruction of three-dimensional (3D) images. The system (10) includes: an imaging system (12) configured to provide projection data corresponding to a structure of interest (60); and a controller (50) in operable communication with the imaging system (50). The controller (50) is configured to: receive the projection data, (64); apply a shape model (66) at a selected 3D seed point (64); and adapt the shape model (66) to represent the structure of interest (60), thereby yielding an adapted shape model.
Abstract:
The present invention refers to an angiographic image acquisition system and method which can beneficially be used in the scope of minimally invasive image-guided interventions. In particular, the present invention relates to a system and method for graphically visualizing a pre-interventionally virtual 3D representation of a patient's coronary artery tree's vessel segments in a region of interest of a patient's cardiovascular system to be three-dimensionally reconstructed. Optionally, this 3D representation can then be fused with an intraoperatively acquired fluoroscopic 2D live image of an interventional tool. According to the present invention, said method comprises the steps of subjecting the image data set of the 3D representation associated with the precalculated optimal viewing angle to a 3D segmentation algorithm (S4) in order to find the contours of a target structure or lesion to be examined and interventionally treated within a region of interest and automatically adjusting (S5) a collimator wedge position and/or aperture of a shutter mechanism used for collimating an X-ray beam emitted by an X-ray source of a C-arm-based 3D rotational angiography device or rotational gantry-based CT imaging system to which the patient is exposed during an image-guided radiographic examination procedure based on data obtained as a result of said segmentation which indicate the contour and size of said target structure or lesion. The aim is to reduce the region of interest to a field of view that covers said target structure or lesion together with a user-definable portion of the surrounding vasculature.
Abstract:
The invention relates to adaptive roadmapping providing improved information to the user, comprising the following steps: providing pre-navigation image data representing at least a part of a vascular structure comprising a tree-like structure with a plurality of sub-trees; generating a vessel representation on the basis of pre-navigation image data; acquiring live image data of the object, which object comprises the vascular structure; wherein the vascular structure contains an element of interest; determining spatial relation of the pre-navigation image data and the live image data; analysing the live image data by identifying and localizing the element in the live image data; determining a sub-tree in which the element is positioned, wherein the determining is based on the localization of the element and on the spatial relation; and selecting a portion of the vascular structure based on the determined sub-tree; generating a combination of the live image data and an image of the selected portion of the vascular structure; and displaying the combination as a tailored roadmap. The element may be physical object, for example an interventional tool or device.
Abstract:
Cardiac CT imaging using gated reconstruction is currently limited in its temporal and spatial resolution. According to an exemplary embodiment of the present invention, an examination apparatus is provided in which an identification of a high contrast object is performed. This high contrast object is then followed through the phases, resulting in a motion vector field of the high contrast object, on the basis of which a motion compensated reconstruction is then performed.
Abstract:
For the reconstruction of the coronary arteries from rotational coronary angiography data, a crucial point is the selection of the optimal cardiac phase for data reconstruction. According to an exemplary embodiment of the present invention, an automatic approach for deriving optimal reconstruction windows is provided by fully automatically selecting the optimal cardiac phase on the basis of a delayed acquisition protocol where at least one heart phase needs to be acquired in a static projection geometry.
Abstract:
A method and apparatus are provided to reconstruct projection data obtained from CT imaging devices with offset detector geometries. According to one aspect of the present invention, a method is provided to reconstruct projection data obtained from CT imaging devices with offset detector geometries that includes the following steps: (i) matching projection data measured at opposing sides of the acquisition trajectory and splicing them together to generate a full, non-truncated projection data set; (ii) differentiation of the projection data; (iii) filtering the differentiated projection data with a filter, such as for example a Hilbert filter; (iv) applying redundancy weighting to the filtered projection data; and (v) back-projecting the redundancy weighted projection data to generate image data.
Abstract:
A system (900) and method for automatic projection-based removing of high-contrast artificial objects from a medical image is provided. The method comprises performing a low-pass filtering (1100) to the two-dimensional image (100, 500, 1000) using a filter width range (1110) corresponding to structures of a line-shaped artificial object to generate a low-pass filtered intensity image and performing an evaluation of the Hessian matrix of each pixels of the low-pass filtered intensity image for locating and enhancing the structure of the line-shaped artificial object to generate a multi-scale filtered intensity image, wherein predefined scaling widths are used in order to avoid the locating and enhancing of larger structures.
Abstract:
For the reconstruction of the coronary arteries from rotational coronary angiography data, a crucial point is the selection of the optimal cardiac phase for data reconstruction. According to an exemplary embodiment of the present invention, an automatic approach for deriving optimal reconstruction windows is provided by fully automatically selecting the optimal cardiac phase on the basis of a delayed acquisition protocol where at least one heart phase needs to be acquired in a static projection geometry.
Abstract:
Cardiac CT imaging using gated reconstruction is currently limited in its temporal and spatial resolution. According to an exemplary embodiment of the present invention, an examination apparatus is provided in which an identification of a high contrast object is performed. This high contrast object is then followed through the phases, resulting in a motion vector field of the high contrast object, on the basis of which a motion compensated reconstruction is then performed.
Abstract:
The present invention relates to thermoplastic vulcanizates (TPVs) based on low Mooney, optionally hydrogenated nitrile butadiene rubber and polyamides. The present invention also relates to TPVs based on low Mooney, optionally, hydrogenated nitrile terpolymers and polyamides. TPVs prepared according to the present invention have improved morphology, smaller rubber particle size, and improved processability compared to TPVs containing non-low Mooney, optionally hydrogenated nitrile butadiene rubber.