Abstract:
A wireless power distribution system for military applications is disclosed. The system includes a wireless power transmitter coupled with a power source. The transmitter may form pockets of energy using controlled radio frequencies. Electrical equipment coupled with an electronic receiver may utilize pockets of energy formed by the transmitter to charge or power the electrical equipment. The transmitter coupled with a power source may be used in a fixed position or may be carried in a vehicle for portability.
Abstract:
The present invention describes a methodology for wireless power transmission based on pocket-forming. This methodology may include one transmitter and at least one or more receivers, being the transmitter the source of energy and the receiver the device that is desired to charge or power. Techniques for determining the location of devices including receivers may be disclosed.
Abstract:
The present disclosure may provide various electric transmitter arrangements which may be used to provide wireless power transmission (WPT) while using suitable WPT techniques such as pocket-forming. In some embodiments, transmitters may include one or more antennas connected to at least one radio frequency integrated circuit (RFIC) and one microcontroller. Transmitters may include communications components which may allow for communication to various electronic equipment including phones, computers and others. Transmitters for wireless power transmission may be feed by a power source, which may have suitable connection with transmitters through several power couplings, including screw caps for light sockets, cables, power plugs among others. Power couplings may depend on final application and user preferences.
Abstract:
Configurations and methods of wireless power transmission for charging or powering one or more electronic sensors or devices within a vehicle are disclosed. Wireless power transmission for powering or charging one or more electronic sensors or devices within a vehicle may include a transmitter capable of emitting RF waves for the generation of pockets of energy; and one or more electronic sensors or electronic devices operatively coupled or otherwise embedded with one or more receivers that may utilize these pockets of energy for charging or powering. Such sensors or electronic devices may range from tire pressure gauges, security alarm sensors, rear window defrosters to audio speakers.
Abstract:
The present disclosure provides a method for improving battery life of electronic devices such as Bluetooth headsets, smart-watches among others running on small batteries, for example coin batteries. The method may include wireless power transmission through suitable techniques such as pocket-forming, while including receivers and capacitors in the aforementioned devices. Wirelessly charged capacitors may provide sufficient power on which devices may run, and thus, battery life of such electronic devices may be enhanced.
Abstract:
A wireless power transmission method may employ pocket forming in combination with one or more reflectors for redirecting the formation of pockets of energy towards one or more locations or electronic devices of interest. A transmitter can be purposely aimed at the reflector which can then redirect the transmitted RF waves towards a receiver embedded or operatively coupled to the electronic device. These reflectors can be installed in the room ceiling, walls, or floor, in relation to the position of the transmitter and the electronic device. Reflectors can be made of metallic materials capable of reflecting RF waves and can exhibit various configurations, shapes, sizes and surface textures, according to the application.
Abstract:
The present disclosure may provide a portable wireless transmitter which may be used to provide wireless power transmission (WPT) while using suitable WPT techniques such as pocket-forming. Portable wireless transmitter may be intended for providing power to a variety of devices in applications which demand portability or mobility for the transmitter. In some embodiments, transmitters may include one or more antennas connected to at least one radio frequency integrated circuit (RFIC) and one microcontroller. In other embodiments, transmitters may include a plurality of antennas, a plurality of RFIC or a plurality of controllers. In addition, portable wireless transmitters may include communications components which may allow for communication to various electronic equipment including phones, computers and others.
Abstract:
Configurations and methods of wireless power transmission for cordless power tools are disclosed. Wireless power transmission for charging one or more cordless power tools may include a toolbox with an embedded transmitter capable of emitting RF waves for the generation of pockets of energy; a battery attached or embedded in the toolbox to supply power to the transmitter; a cable that may connect toolbox's battery to a suitable external power source for charging; and one or more cordless power tools which may include rechargeable batteries and receivers that may utilize pockets of energy for wireless charging or powering. When the battery in the toolbox is charged to suitable levels, the toolbox can be disconnected from the external power source and carried to an area or location where one or more cordless power tools may receive wireless charging.
Abstract:
The present disclosure describes a methodology for wireless power transmission based on pocket-forming. This methodology may include one transmitter and at least one or more receivers, being the transmitter the sender of energy and the receiver the device that is desired to charge or power. In the present disclosures, transmitters may utilize alternate sources of energy such as solar or wind power. Furthermore, transmitters, in some embodiments, may include a battery module for storing surplus energy. Lastly, a portable assembly for providing wireless power running on alternate sources of energy may be provided.
Abstract:
A cup or plate for heating food or beverages is disclosed. The cup/plate contains a heating component, which may keep consumable goods, such as food and beverages at a desired temperature. An insulated external layer may be placed between the heating component and the external portion of the cup/plate. A wireless power receiver may be coupled to the heater component to receive an electrical power source and transfer it to the heater component. A transmitter element may form pockets of energy at the location of the different receivers to be used as power sources.